Release Abatement Measure Plan

Former Raytheon Facility 430 Boston Post Road Wayland, Massachusetts VERTEX Project No. 19163 Release Tracking Number (RTN): 3-13302

VERTEX

Prepared By:

VERTEX Environmental Services, Inc. 400 Libbey Parkway Weymouth, MA 02189

August 5, 2011

Prepared For:

Twenty Wayland 10 Memorial Boulevard Suite 901 Providence, RI 02903 Attention: Mr. Frank Dougherty Submitted To:

Massachusetts Department of Environmental Protection Northeast Regional Office 205B Lowell Street Wilmington, MA 01887 Attention: Bureau of Waste Site Cleanup

Vertex Environmental Services, Inc. Vertex Environmental Insurance Services, Inc. Vertex Construction Services, Inc. Vertex International Services Vertex Air Quality Services, LLC Vertex Ingenieros Consultores, S. de R.L. de C.V. Corporate Headquarters 400 Libbey Parkway Weymouth, MA 02189 www.vertexeng.com p: 781.952.6000 f: 781.335.3543

August 5, 2011

Massachusetts Department of Environmental Protection Northeast Regional Office 205B Lowell Street Wilmington, MA 01887

RE: Release Abatement Measure Plan Former Raytheon Facility 430 Boston Post Road Wayland, Massachusetts VERTEX Project No. 19163 Release Tracking Number (RTN): 3-13302

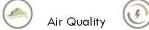
Attention: Bureau of Waste Site Cleanup;

VERTEX Environmental Services, Inc. (VERTEX) is pleased to submit this Release Abatement Measure (RAM) Plan for the release listed under the above referenced RTN (the "Subject Site"). This document has been prepared for Twenty Wayland in accordance with the provisions contained in Section 40.0444 of the Massachusetts Contingency Plan (MCP).

Pursuant to 310 CMR 40.1403(3)(d)(2), public notice of the RAM Plan implementation has been provided to both the Town of Wayland Health Department and the Town Administrator's office, concurrently with this RAM Plan. The Subject Site is subject to a Public Involvement Plan (PIP) for which a PIP dated July 13, 2004 was prepared by ERM on behalf of Raytheon, the Responsible Party for the above RTN. Accordingly, a draft of this RAM Plan has been submitted to the repository for a 20-day public comment period. Subsequent to the receipt of comments from the public, VERTEX will prepare a summary of the comments and responses and submit to the repository within 60 days from the close of the public comment period.

Please do not hesitate to contact us should you have any questions or require additional information.

Environmental


Sincerely,

Vertex Environmental Services, Inc.

Arie Bar Josef, PG Sr. Project Manager James B. O'Brien, LSP President

TABLE OF CONTENTS

1.0	SUM	MARY OF THE GENERAL SITE INFORMATION	1		
1.1	Exis	sting Site Conditions and Limits of the RAM Area	1		
1.2	Site	History and Usage	1		
1.3	Pro	posed Subject Site Redevelopment and RAM Objectives	2		
1.4	Res	ponsible Party Conducting the RAM	3		
1.5	Lice	ensed Site Professional	4		
1.6	Sun	mary of the Subject Site Regulatory Status	4		
1.	.6.1	RTN 3-13302	4		
1.	.6.2	RTN 3-22408 (linked to RTN 3-13302)	5		
1.	.6.3	Activity and Use Limitation (AUL)	6		
1.	.7.1	Human Receptors	8		
1.	.7.2	Ecological Receptors	8		
3.0	RELI	EASE ABATEMENT MEASURE PLAN 1	12		
4.0	RAM	WASTE MANAGEMENT 1	16		
6.0	FOCU	USED RISK CHARACTERIZATION	20		
6.1	Haz	ard Identification	20		
6.2 Identification of Contaminants of Concern (COCs) and Risk Estimation					
Pro		S			
6.3	Exp	osure Assessment	23		
6.5	Env	ironmental Monitoring	27		
6.6		x of Harm to Future Site Workers, USERS and/or Occupants			
7.0	FOCUSED FEASIBILITY EVALUATION 30				
8.0	QUA	LIFICATIONS	31		

TABLES

Table 1:	Summary of Soil Vapor Analytical Results
Table 2:	Summary of Soil Gas Exposure Point Concentrations
Table 2A:	Diffusion of Contaminants in Indoor Air Using Soil Gas Data
Table 3:	Summary of Soil Analyses and Risk Data
Table 4:	Summary of Groundwater Analyses
Table 5:	Summary of Contaminants of Concern and Human Health Risk Quotients

FIGURES

Figure 1:	Site Locus

Figure 2:	Site Plan
-----------	-----------

Environmental

TABLE OF CONTENTS (Continued)

APPENDICES

- Appendix A: Laboratory Analytical Reports
- Appendix B: ERM Well Location Plans
- Appendix C: Method 3 Risk Characterization

1.0 SUMMARY OF THE GENERAL SITE INFORMATION

Details regarding the Subject Site information are contained in various phased reports that were previously submitted to the MADEP. The property that contains the Subject Site is listed by the MADEP under multiple Release Tracking Numbers (RTNs) due to releases of oil and/or hazardous materials (OHM) that occurred at different locations across the property. The portion of the property that is the subject of this RAM Plan (the Subject Site) is listed under RTN 3-13302. A summary of the Subject Site information and regulatory status is presented below.

1.1 EXISTING SITE CONDITIONS AND LIMITS OF THE RAM AREA

The MADEP database lists Subject Site address as 430 Boston Post Road in Wayland, Massachusetts. The Subject Site is bounded by Boston Post Road (Route 20) and a Massachusetts Bay Transportation Authority (MBTA) easement to the south, Old Sudbury Road (Route 27) to the east, the Sudbury River and its associated wetlands to the west, and undeveloped land and wetlands to the north. The general site location is shown on **FIGURE 1**. The Subject Site was formerly operated as a research and design facility by Raytheon Company between 1955 and 1995 for electronic testing and chemical process research. In 1995, Raytheon ceased operations as the Subject Site and decommissioned the facility. The portion of the Subject Site that is proposed for redevelopment is currently occupied by three (3) vacant one and two-story buildings that have no basements, and associated paved and landscaped areas.

The current buildings are scheduled for demolition prior to the Subject Site redevelopment. The Subject Site topography within the proposed RAM area is relatively flat, with elevations varying from approximately EL. 133 to EL. 135 as referenced to the National Geodetic Vertical Datum (NGVD) 1929. The limits of the RAM area are depicted on the enclosed **FIGURE 2**.

1.2 SITE HISTORY AND USAGE

80

Details regarding the Subject Site history and usage are contained in previously submitted reports. In summary, the property that contains the Subject Site was utilized for agricultural and

1

residential purposes until circa 1955. From 1955 to 1995, the Subject Site was occupied by a Raytheon research facility for electronic testing equipment and that included printed circuit board laboratory and operation of small-scale chemical processes. During the Subject Site operation by Raytheon, wastewaters were treated onsite and discharged to the Sudbury River under a NPDES permit. Reportedly, a leaching field was utilized for the sanitary waste prior to 1962 and industrial waste prior to 1972. Subsequently, the use of the leaching field was discontinued and the Subject Site is currently serviced by a municipal sanitary sewer and water supply and by other public utilities. In 1995, Raytheon ceased operations and decommissioned the facility. Subsequently, the buildings were utilized by Polaroid Corporation and by subsequent various other tenants until circa 2007 when the buildings were vacated and remained vacant to-date.

1.3 PROPOSED SUBJECT SITE REDEVELOPMENT AND RAM OBJECTIVES

The limits of the property addressed by this RAM Plan are shown on the enclosed **FIGURE 2** and encompass the majority of the former Raytheon property hereinafter referred to as the Subject Site. As shown in **FIGURE 2**, the Subject Site contains two (2) areas: east and west of the "Raytheon Line". The purpose of the "Raytheon Line" is explained in Section 3 below. Based on available information, the proposed redevelopment of the former Raytheon property will include the following concurrent elements:

- Eastern Portion. The portion of the Subject Site that is situated to the east of the "Raytheon Line" and currently occupied by the vacant Raytheon facility will be redeveloped to include construction of commercial buildings including retail stores, a supermarket, offices, multi-unit residences and associated paved parking areas, roadways and new utilities and infrastructure as shown on **FIGURE 2**. The proposed residences will utilize the upper floors of some of the commercial buildings.
- Western Portion. The portion of the Subject Site that is situated to the west of the "Raytheon Line" that currently contains paved parking lots, undeveloped land and a small vacant building is scheduled for redevelopment into a multi-unit residential community and

Construction

2

a public open space. However, it is understood that general site re-grading and preparatory work will be completed concurrent to the development of the eastern portion of the Subject Site and that the proposed residential buildings will be constructed subsequent to the completion of the construction activities at the eastern portion of the Subject Site.

Since the proposed redevelopment of the former Raytheon property will occur in phases, this RAM Plan is focused on addressing MCP response actions associated with the implementation of the first phase of development at the eastern portion of the Subject Site and the preparatory work at the western portion of the Subject Site. A subsequent RAM Plan Modification will be submitted to the MADEP prior to the commencement of MCP response actions during future development at the western portion of the Subject Site.

None of the proposed buildings will have basements and below-grade structures will be limited to subsurface utilities, foundations and other infrastructure elements. Excavations during construction are anticipated to be relatively limited as incidental to the proposed development. A sanitary sewer pump station will be constructed as part of the proposed redevelopment. The site preparation work will likely include removal of existing asphalt pavement, existing building foundations and abandoned utilities and will involve localized excavation of potential fill or natural soil. Localized dewatering is likely to be required. It is anticipated that the construction dewatering effluent will be recharged onsite subsequent to appropriate characterization and in accordance with applicable regulatory requirements. Details regarding the proposed on-site recharge are presented below.

The objectives of the proposed RAM are to achieve a condition of No Significant Risk of harm to human health, public safety and welfare, and the environment predicated upon a Permanent Solution as defined in the MCP.

1.4 RESPONSIBLE PARTY CONDUCTING THE RAM

Twenty Wayland, LLC c/o KGI Properties 10 Memorial Boulevard, Suite 901 Providence, Rhode Island 02903

3

Contact: Mr. Frank Dougherty Tel: 401-273-8600

1.5 LICENSED SITE PROFESSIONAL

James B. O'Brien, LSP #9092 Vertex Environmental Services, Inc. 400 Libbey Parkway Weymouth, Massachusetts 02189 Tel: 781-952-6000

1.6 SUMMARY OF THE SUBJECT SITE REGULATORY STATUS

Presently, there is one (1) parent RTN listed for the Subject Site: RTN 3-13302. Several other RTNs are linked to RTN 3-13302, as described below.

1.6.1 RTN 3-13302

RTN 3-13302 was issued on January 2, 1996 in response to the discovery of petroleum contamination in a groundwater monitoring well that is located adjacent to a former 20,000-gallon No. 6 fuel oil underground storage tank (UST). This RTN is currently utilized as the primary RTN for MCP response actions related to Tier IB Permit No. 133939.

The following RTNs were assigned to separate releases, but have been linked to the primary RTN 3-13302. A portion of the Disposal Site listed under RTN 3-13302 is located within the limits of the proposed RAM (refer to **FIGURE 2**).

• **RTN 3-1783** was issued on January 15, 1987 in response to an EPA listing due to a "waste storage impoundment" identified in aerial photographs which were reported as correlated with wastewater treatment impoundments associated with the former Raytheon facility Sanitary Treatment Plant. This RTN was closed by the MADEP on July 31, 1995 subsequent to the submittal of an LSP Evaluation Opinion.

4

- RTN 3-13574 was issued March 28, 1996 as a result of the discovery of volatile organics (VOCs) contamination in tested groundwater samples at concentrations in excess of the MCP Reportable Concentrations (RC) for groundwater category RCGW-1. This RTN was closed by the MADEP on November 28, 2000.
- **RTN 3-14042** was issued July 25, 1996 as a result of the discovery of polychlorinated biphenyls (PCBs) contamination in tested soil samples at levels in excess of the applicable RC. This RTN was closed by the MADEP on November 28, 2000.
- **RTN 3-19482** was issued May 9, 2000 in response to the discovery of PCBs and metals impacts to wetland. This RTN was closed by the MADEP on November 28, 2000.
- **RTN 3-22665** was issued March 12, 2003 in response to the discovery of chromium in groundwater at concentrations above the applicable RC. Subsequent investigation by others concluded that the chromium in groundwater was attributed to a naturally-occurring chemical oxidation due to in-situ remediation activities. This RTN was closed by the MADEP on December 10, 2003 subsequent to an LSP opinion to that effect.

In 2002, Environmental Resource Management (ERM) submitted to MADEP a Phase IV Remedy Implementation Plan (RIP) for two distinct remedial actions at the Subject Site under RTN 3-13302. ERM proposed wetland remediation on the western portion of the property which is outside of the proposed RAM limits and in-situ groundwater remediation on the southern and eastern portions of the Subject Site, which are partially contained within the proposed RAM limits. In situ chemical oxidation of the groundwater was conducted by ERM during May through July 2004. The Disposal Site listed under RTN 3-13302 is currently in Phase V -Remedy Operation Status, and ERM continues to perform semi-annual groundwater quality monitoring.

1.6.2 RTN 3-22408 (linked to RTN 3-13302)

Environmental

The Disposal Site listed under RTN 3-22408 consists of three (3) distinct and separate affected areas for which MCP response actions are conducted under a Tier 1B permit No. W045278. The three distinct and separate areas are located outside the proposed RAM limits for RTN 3-13302. The Contaminants of Concern (COCs) listed under RTN 3-13302 include chlorinated VOCs, arsenic and methyl-tertiary-butyl-ether (MTBE). In 2007, ERM submitted a Partial Class B-1 RAO for the arsenic release in the western portion of the property which is located outside of proposed RAM limits. ERM attributed the detected levels of arsenic in groundwater to naturally-occurring arsenic in soil that was mobilized as a result of natural reducing conditions in the wetlands associated with the Sudbury River.

Subsequently, ERM submitted a Phase IV - Remedy Implementation Plan (RIP) for the remaining portions of RTN 3-22408. ERM proposed excavation and removal of soil impacted by CVOCs from the northern portion of the property, outside the limits of the RAM proposed herein. ERM also proposed the implementation of in-situ bioremediation of the groundwater within the area impacted chlorinated VOCs, which is also outside the limits of the proposed RAM. In July 2008, ERM submitted a Modified Phase IV RIP. In June 2009, RTN 3-22408 was linked to the parent RTN 3-13302 and MCP response actions are on-going under RTN 3-13302.

1.6.3 Activity and Use Limitation (AUL)

Three (3) Notices of AUL had been recorded for the Subject Site. A summary of the Notices of AUL are presented below.

• <u>Site-Wide AUL</u>: On October 21, 1997, a "site-wide" AUL was recorded to restrict certain activities and uses at the Subject Site to mitigate potential human exposure and maintain the condition of No Significant Risk of harm to human health upon which the AUL is based. This "site-wide" AUL applies the entire property, including the area subject to this RAM Plan (the Subject Site). Activities and uses that are considered in the Notice of AUL as consistent with a condition of No Significant Risk of harm to human health include any

6

commercial and/or industrial uses including such uses as offices, retail, wholesale, storage and warehouses or manufacturing.

In summary, the Notice of AUL restricts residential or other uses where children would be present at high frequency and potentially exposed at high intensity. Other restricted activities include the growing of fruit or vegetables for human consumption, excavation, below-grade construction, and below-grade utility maintenance unless determined by an LSP that such activities would not pose a substantial hazard or significant risk to human health, public safety, welfare, or the environment. The existing Notice of AUL will be revised to allow residential usage of the Subject Site.

The Notice of AUL contains provisions for the management of contaminated soil or groundwater during construction, if encountered. This RAM Plan contains provisions for the management of impacted soil and/or groundwater during the redevelopment of the Subject Site consistent with the requirements of the Notice of AUL.

<u>UST Area AUL</u>: A Notice of AUL was recorded on April 13, 1999 for approximately 0.8-acre portion of the Subject Site (refer to **FIGURE 2**). This Notice of AUL was recorded as part of a Class A-3 Response Action Outcome (RAO) Statement for the release of petroleum hydrocarbons associated with a former fuel oil UST and listed under RTN 3-13302. This Notice of AUL is generally consistent with the provisions contained in the Site-Wide Notice of AUL. This RAM Plan contains provisions for the management of impacted soil and/or groundwater, if encountered, during the redevelopment of the Subject Site consistent with the requirements of the Notice of AUL.

• <u>Hamlen Property AUL</u>: A Notice of AUL was filed on January 9, 2006 for an approximately 5.5-acre portion of the former Hamlen property to address a release of PCBs. Based on information regarding the proposed Subject Site redevelopment, this Notice of AUL pertains to a release which occurred on a portion of the property that is located outside of proposed RAM limits to the west. Thus, this Notice of AUL is not considered relevant to the proposed RAM.

Air Quality

1.7 Receptors Information

1.7.1 Human Receptors

The Subject Site is located adjacent to commercial and residential properties and a protected open space. Identified potential human receptors who may exposed through direct contact or incidental ingestion of impacted soil during construction at the Subject Site include construction and/or utility workers, adult visitors, occasional trespassers (including children), residents at near-by residences and the general public as passers-by. In accordance with the requirements of the Notice of AUL, a Health and Safety Plan will be prepared for and implemented at the Subject Site during construction activities. Thus potential exposure by the on-site construction and/or utility workers, and visitors will be managed through the use of appropriate personal protective equipment (PPE) and implementation of risk-mitigating measures. The criteria regarding usage of PPE and implementation or risk reduction measures are addressed in Section 6.5 below.

In addition, the Subject Site is located within a Zone II Wellhead Protection Area for the Baldwin Pond Wellfield, which according to ERM's 1996 Phase I Report for RTN 3-13302 is located cross-gradient to the Subject Site, approximately 0.5 miles to the north. Based on information contained in the ERM reports there is no evidence suggesting adverse impacts at the Baldwin Pond Wellfield due to the known groundwater conditions listed under RTN 3-13302. As noted above, groundwater remediation/monitoring at RTN 3-13302 is on-going by ERM on behalf of Raytheon. Thus the potential for human exposure due to ingestion of potable water that originates from the Baldwin Pond Wellfield is considered insignificant.

1.7.2 Ecological Receptors

As noted above and as shown in **FIGURE 2**, this RAM Plan pertains to most of the former Raytheon property which includes the western portion of the property that contains wetlands or other undeveloped areas. However, current site development plans indicate that construction activities within the western portion of the former Raytheon property would be limited at this

8

time to general regarding or resurfacing in preparation to potential future development. As noted on **FIGURE 2**, there are no identified ecological receptors such as wetlands, surface water bodies or terrestrial habitats located within the eastern portion of the Subject Site.

The Great Meadows National Wildlife Refuge (GMNWR), which includes the Sudbury River (a Class B Surface Water) and adjacent wetlands, abuts the Subject Site to the north and west and is managed by the U.S. Fish and Wildlife Service for protection of fresh-water wetlands and other terrestrial habitats. Open space maintained by the Wayland Conservation Commission is located to the north and northwest of the Subject Site.

Environmental

9

2.0 SITE SUBSURFACE CONDITIONS

The Subject Site subsurface conditions had been assessed during the various phases of investigation, the results of which are contained in reports that were previously submitted to the MADEP for the above referenced RTNs. The following is a summary of the Subject Site subsurface conditions.

The geologic units present at the site are listed in order of occurrence from ground surface downward:

Lacustrine Sequence Fluvial Deposits Glacial Till Bedrock

A description of each geologic unit follows:

- <u>Lacustrine Sequence</u> In general, naturally-deposited or disturbed lacustrine sand and silt deposits are present below topsoil in landscaped areas or below minor fill material and beneath existing pavement or building footprint. The lacustrine sequence consists of brown coarse to medium sand which varies in thickness from 30 to 50 feet, underlain by gray silt which is generally 5 to 20 feet thick. The silt deposit is underlain by gray-brown fine to medium sand which is generally 5 to 10 feet thick.
- <u>Fluvial Deposits</u>- A discontinuous deposit of sand and gravel was identified by ERM below the glaciolacustrine deposits at some locations. The fluvial deposits are typically described as brown fine to coarse sand and gravel with a thickness ranging up to 5 feet.
- <u>Glacial Till Deposit</u>- A discontinuous deposit of glacial till, generally less than 5 feet in thickness, was identified at some locations by ERM. The glacial till deposits are

Air Quality

described as very dense coarse to fine sand and gravel with varying amounts of silt, occasional cobbles and boulders.

• <u>Bedrock</u>- Bedrock was encountered in borings across the property at a depth ranging from 60 to 80 feet below grade. The bedrock consists of a hard, generally sound igneous and metamorphic sequence of the Claypit Hill formation.

In general, groundwater was encountered at depths in excess of ten (10) feet below ground surface. ERM has previously identified groundwater below the eastern portion of the property at about El. 116 to El. 124 which corresponds to a depth ranging from fifteen (15) to nineteen (19) feet below grade. Local groundwater levels are likely to be affected by factors such as existing subsurface structures, precipitation, surface runoff, underground utilities, and seasonal fluctuations.

Environmental

Air Quality

3.0 **RELEASE ABATEMENT MEASURE PLAN**

The objective of this RAM Plan is to provide procedures for management of contaminated soil and/or groundwater if encountered consistent with the requirements of the existing Site-Wide Notice of AUL, as they pertain to the RAM area.

In summary, the existing Site-Wide Notice of AUL requires that activities involving excavation, disturbance or otherwise potential exposure to subsurface contaminated media be performed in accordance with a contingency plan that will include the following elements:

- Implementation of a program of environmental monitoring;
- Notification procedures to be implemented upon discovery of conditions or • contamination that require such notification;
- Conduct of all MCP response actions under a supervision of an LSP; •
- Implementation of a Soil Management Plan (SMP) including procedures for handling, storage, transportation and off-site disposal of impacted soil and/or groundwater, if encountered, and;
- Implementation of a Health and safety Plan (HASP) in accordance with applicable state and federal regulations.

As noted in TABLE 3, none of the tested soil samples exhibited concentrations of any of the analytes tested for in excess of the MCP Method 1 S-1/GW-1 standards, thus suggesting that soil situated within the RAM area would not require the implementation of special risk mitigating measures and would not be considered remediation waste. However, this RAM plan contains provisions for the management of impacted soil if such soil is encountered during the proposed construction activities. In addition, in accordance with the existing Site-Wide Notice of AUL, temporary construction dewatering requirements are addressed in this RAM Plan.

No federal permits are expected to be required for the RAM activities. The RAM activities will be performed in coordination with Raytheon and their environmental consultant ERM under the

12

Air Quality

Energy

two existing Tier IB permits for the site (No. 133939 and No. W045278). As Raytheon will be providing such oversight, Twenty Wayland LLC will not need to be named on the Tier IB permit to implement the RAM Activities.

The proposed RAM Activities are as follows:

- Excavated soil will be observed for visual and olfactory evidence of contamination. Representative soil samples will be collected during the excavation and screened for the presence of total volatile organics (TVOC). Soils that exhibit TVOC readings in excess of 10 parts per million (ppm) or exhibit visual or olfactory evidence of contamination will be either assessed in place or relocated to temporary stockpiles on-site and characterized to determine their suitability for on-site reuse or off-site disposal. Based on their evaluation of historic site operations, Raytheon has conservatively created a line deemed the "Raytheon Line" (FIGURE 2), which separates the portion of the site to be developed with mixed use commercial and residential (residences at upper floors of commercial buildings) south and east of the line ("Commercial Area"), and the portion of the site to be developed for residential usage (north and west of the line – "Residential Area"). However, as noted above, current development plans for the Residential Area are limited to general site grading or preparatory utility work and the construction of future residential buildings will be conducted in accordance with a Modified RAM Plan that will be prepared and submitted to the MADEP prior to the commencement of construction activities at the Residential Area. Per Raytheon requirements, soil originating from the eastern portion of the Subject Site, east of the "Raytheon Line", will not be reused on western portion of the Subject Site, to the west of the "Raytheon Line". However, soil from the west side of the "Raytheon Line" may be reused to the east of the line.
- Based on the results of the characterization, excavated soils may require off-site disposal. Any off-site disposal will be managed in accordance with applicable MADEP policies and regulations. Specifically, if the results of the characterization indicate that the soil requires off-site disposal, such soil will be disposed off-site in accordance with relevant

Environmental

13

regulations. Based on the results of the soil samples analyses (**TABLE 3**) it is anticipated that off-site disposal would not be required. However, an estimated volume of 500 CY for off-site disposal is included herewith as a contingency.

- Temporary stockpiles will be managed as described below.
- Existing chemical test data indicates that none of the tested samples exhibited the presence leachable metals (TCLP) in excess of the RCRA lower hazardous waste limits. However, should the results of the stockpiles characterization indicate TCLP exceedences, an on-site TCLP treatment of up to 500 CY is included as a contingent RAM activity. The TCLP treatment will result in a reduction the leachable metals to levels below the RCRA lower hazardous waste limits. Upon completion, the TCLP treated soil will be disposed off-site in a manner consistent with applicable MADEP policies and regulations based on the results of the characterization.
- The proposed construction excavation, including for the sewer pump station that extends to about Elevation 111.5 which is approximately 21 feet below grade, is not anticipated to encounter impacted groundwater. Available groundwater quality data indicates that groundwater situated at a shallow depth, generally less than 25 feet below grade, is not affected by the COCs at concentrations that require the implementation of response actions under the MCP. It is anticipated that the limited quantities of groundwater that may accumulate in the localized excavations (foundations, utilities or other infrastructure) will be re-charged on-site in accordance with applicable MADEP policies and regulations. However, should impacted groundwater be encountered, the management of such groundwater will be coordinated with Raytheon and ERM in conjunction with the on-going groundwater remediation. Construction dewatering is described further in Section 5.0.
- As part of the proposed RAM activities, and in accordance with the requirements presented by Raytheon, the infrastructure for a future venting system including crushed stone and slotted PVC pipe will be installed within the soil vadose zone beneath the

Environmental

concrete slabs of the proposed residential and possibly commercial buildings. As noted by the results of the soil gas analyses and by the results of the groundwater samples chemical tests, mitigation of potential vapor intrusion is not required however the infrastructure will be installed as an added conservative risk reduction measure. The specific design of the venting systems will be prepared upon completion of the proposed building designs.

- As an additional risk-mitigating measure and in accordance with the requirements by Raytheon, a vapor barrier will be installed across the entire foot print of each residential and possibly commercial building that will be constructed at the Subject Site. The vapor barrier will consist of material of sufficiently low permeance to mitigate potential migration of VOC vapors. The vapor barrier material will be selected and the barrier designed upon completion of the buildings foundation design. The vapor barrier will be installed below the concrete slab of the buildings and over the crushed stone and slotted PVC pipe infrastructure.
- There are three closed-in-place underground storage tanks (USTs) located within the limits of the RAM Area (the Subject Site). If a closed-in-place UST is encountered during RAM activities, it will be managed appropriately in accordance with all applicable laws, regulations and policies.
- As noted in the Focused Risk Characterization (FRC) below none of the soil samples exhibited the presence of the COCs at concentrations in excess of the MCP Method 1 S-1/GW-1, 2 and 3 thus are considered to pose No Significant Risk (NSR) of harm to human health. Additionally, the results of the FRC indicate that a condition of NSR exists for construction workers and other identified human receptors. However, as a conservative measure, VERTEX will perform dust monitoring utilizing Dust Trak dust monitors at up-wind, down-wind and perimeter locations. Details regarding the proposed dust action level are presented in Section 6.5 below.

Environmental

Air Quality

Energy

4.0 RAM WASTE MANAGEMENT

The objective of this RAM Plan is to minimize the generation of remediation waste. The proposed construction is not anticipated to require off-site disposal of excavated soil or off-site discharge of dewatering effluent. Most of the excavated soil is likely to be reused on-site for foundation, infrastructure and utility backfill. On-site reuse will be conducted in accordance with applicable MADEP policies and regulations. As noted below, dewatering effluent will be recharged on-site.

However, in the event excess soil will require off-site disposal, such soil will be appropriately characterized and disposed off-site in a manner consistent with applicable MADEP policies and regulations. Records of such characterization and off-site disposal will be submitted to the MADEP as required.

- Soil stockpiles management. Temporary stockpiles will be placed on polyethylene substrate and covered with polyethylene until it is determined that the soil either can be reused on-site or disposed off-site. In addition, such stockpiles will be surrounded with silt fences or booms in order to mitigate potential migration during precipitation events.
- Off-site reuse, recycling or disposal. Soil destined for off-site reuse or disposal will be characterized in accordance with MADEP Policy COMM-97-001. Based on the results of the soil characterization, the soil will be reused, disposed or recycled off-site. Additional characterization, beyond the requirements contained in Policy COMM-97-001 will be performed depending on specific facility requirements. As noted above, soil exhibiting leachable metals in excess of the RCRA lower hazardous waste limit (TCLP) will be treated on-site to reduce the levels of TCLP below the hazardous waste limits. Any off-site transportation of RAM waste will be accompanied by appropriate Bills of Lading as required.

Environmental

16

It is anticipated that the total volume of soil that potentially may require off-site disposal would not exceed the 1500 cubic yard limit set forth in 310 CMR 40.0442(5) thus a statement of financial ability is considered not required.

17

(14

5.0 CONSTRUCTION DEWATERING

Based on information regarding the proposed redevelopment of the Subject Site, localized construction dewatering is likely to be required in order to manage groundwater that may accumulate at excavations for foundations, utilities or other infrastructure. It is anticipated that relatively limited amounts of water will be handled under the construction dewatering, including the excavation for the proposed sewer pump station.

The dewatering activities will be performed in accordance with MADEP Policy WSC-00-425 and pursuant to the provisions contained in Section 40-0045 of the MCP. The results of the groundwater sampling and testing (TABLE 4) indicate that except for VOCs none of the analytes tested for (SVOCs, PCBs, pesticides and dissolved metals) were detected in any of the samples obtained from the area subject to the RAM at levels in excess of the RDLs. The 2010 and 2011 ERM groundwater quality data that is included in phased reports that were previously submitted to the MADEP and are made a part of this RAM Plan by reference (refer to **APPENDIX B** for the ERM well locations), indicates that samples obtained from some of the monitoring wells that are situated within the Subject Site exhibited detectable concentrations of chloroform, tetrachloroethene (PCE), trichloroethene (TCE), cis-1-2-dichloroethene (cis-1,2-DCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethene (1,1-DCE), vinyl chloride (VC) and 1,1-dichloroethane (1,1-DCA) collectively referred to as chlorinated VOCs (CVOCs). As shown in **TABLE 4**, the detected levels of PCE, TCE, cis-1,2-DCE and VC exceed the Method 1 GW-1 or GW-2 standard, but are below the Method 1 GW-3 standards. However, based on available groundwater data contained in various ERM reports that were previously submitted to the MADEP indicates that groundwater that is situated at a depth shallower than 25 feet below grade generally did not exhibit levels of CVOCs in excess of the MCP Method 1 standards, thus are considered reflective of the groundwater conditions that are anticipated to be encountered within the proposed construction excavations.

Therefore, it is concluded that groundwater that may accumulate in localized excavations may be pumped into a proximate recharge trench or well that will be constructed for this purpose within

Construction

Air Quality

Energy

80

Environmental

the limits of the RAM area without causing degradation at the location of discharge, in accordance with the "non-degradation" provisions of the MCP.

Since the on-site recharge of the dewatering effluent is considered an MCP remedial action that is conducted under MGL Ch. 21E, the proposed dewatering does not require a permit as defined in 310 CMR 5.05(16). However, if on-site recharge of the dewatered effluent is considered not possible, VERTEX will coordinate the off-site discharge thereof with ERM through a National Pollution Discharge and Elimination System (NPDES) Remediation General Permit (RGP) subsequent to appropriate characterization.

Environmental

19

6.0 FOCUSED RISK CHARACTERIZATION

A Focused Risk Characterization (FRC) was performed for the Subject Site in support of the RAM Plan. The FRC was performed in accordance with the provisions contained in Section 40.0442(3) of the MCP and the MADEP Policy WSC-00-425.

A Method 3 Risk Characterization, as described in Section 40.0995 of the MCP was utilized in this FRC to characterize the potential risk of harm to human health during construction activities at the Subject Site. In addition, potential exposure and risk of harm to future Subject Site workers, buildings occupants and potential residents of the upper floors of the proposed commercial buildings are addressed.

6.1 HAZARD IDENTIFICATION

Hazard identification involves the assessment of the human health effects associated with potential exposures to the identified COCs in each environmental medium.

• Soil. The soil data selected for use in the FRC consist of data from sampling locations within the Subject Site (RAM Area) that are considered representative of soil to which identified human receptors could be exposed during the conduct of the RAM and construction activities. The soil data include samples collected by Haley & Aldrich, Inc. and by ERM across the Subject Site during their investigations. Results of the sampling performed by Haley & Aldrich are contained in **APPENDIX A** and summarized in **TABLE 3**. Results of the ERM soil sampling and testing are contained in reports that were previously submitted to the MADEP.

The COCs are identified as those compounds that were detected at concentrations in excess of the laboratory reported detection limits (RDLs) and include VOCs, extractable petroleum hydrocarbons (EPH) fractions C9-C18 aliphatics, C19-C36 aliphatics and C11-C22 aromatics, and RCRA metals (arsenic, barium, chromium, and lead).

Air Quality

Energy

Construction

- Groundwater. The groundwater data selected for use in the FRC consist of test results from wells located within or most proximate to the area subject to this RAM Plan. Refer to **FIGURE 2** for the monitoring well locations at the eastern portion of the Subject Site. Monitoring wells located at the western portion of the Subject Site are shown on figures contained in previously submitted reports prepared by ERM and made a part of this RAM Plan by reference (refer to APPENDIX B for the ERM well locations). The groundwater data included three (3) samples collected by ERM in 1995, 1998, and 2002 and samples collected by ERM in 2010 and in 2011 the results of which are contained in a Remedy Operation Status (ROS) Report prepared by ERM, dated May 2011 and previously submitted to the MADEP. Refer to **TABLE 4** for the analyses results. Analytical results for the three (3) samples obtained in 1995, 1998 and 2002, indicate that none of the tested samples exhibited concentrations of the COCs in excess of the RDLs which are below the applicable MCP Method 1 risk-based groundwater standards. As noted above, the results of the 2010 and 2011 analyses indicated that samples obtained from some of the monitoring wells that are situated generally within the western portion of the Subject Site exhibited concentrations of chlorinated volatile organics (CVOCs) at levels in excess of the MCP Method 1 GW-1 or GW-2 standards, but below the MCP Method 1 GW-3 standards. The detected concentrations of CVOCs in the tested groundwater samples were identified as a potential source of indoor air impacts. The potential indoor air impacts are evaluated below.
- Soil gas. The soil gas data used in the FRC consists of results from sampling locations within the eastern portion of the Subject Site (RAM area) that are considered representative of conditions which identified receptors could be exposed to during construction and during post-RAM commercial and possibly residential usage, as described above. Refer to FIGURE 2 for the soil gas sampling locations. The soil gas data consists of samples collected by Haley & Aldrich, Inc. across the Subject Site in 2008. The soil gas samples were analyzed for VOCs via Method TO-15, the results of which are summarized in **TABLE 1**. The soil gas analytical results (refer to **APPENDIX** A) were used to estimate ambient and indoor air concentrations as a result of diffusion from the vadose zone.

Environmental

21

6.2 IDENTIFICATION OF CONTAMINANTS OF CONCERN (COCS) AND RISK ESTIMATION PROCEDURES

Of the analytes tested for, CVOCs were detected in groundwater samples at concentrations in excess of the RDLs or the applicable MCP risk-based standards, thus are identified as COCs for the Subject Site groundwater. With respect to metals detected in the tested soil samples, the maximum detected levels were compared to background concentrations for natural soil published by the MADEP (Technical Update 2002). In general, COCs for which the maximum detected concentrations do not exceed the published MADEP background concentrations need not be included in the FRC because they are considered to meet the background definition contained in the MCP and thus, by definition, pose No Significant Risk. However, conservatively, these COCs were included in the estimation of the cumulative risk of harm posed to construction and/or utility workers, site visitors, occasional trespassers and/or passers-by.

Metals were detected in the tested soil samples at levels generally below the MADEP applicable background concentrations for natural soil, thus by definition are considered to pose No Significant Risk. In addition, as shown in **TABLE 3**, none of the EPCs that were identified for the detected metals are in excess of the MCP Method 1 S-1/GW-1 standards thus are considered to pose No Significant Risk of harm to human health under unrestricted exposure scenarios. However, as noted above, in order to address the potential cumulative health effects to the identified human receptors, the detected levels of metals were included in this FRC.

With respect to the EPH fractions and VOCs detected in the tested soil samples, the EPCs are well below the MCP Method 1 S-1/GW-1 Standards which are considered by the MADEP protective of human health under any unrestricted usage and/or exposure. However, as noted above, in order to address the potential cumulative health effects to the identified human receptors, the detected levels of EPH fractions were included in this FRC.

Detected concentrations of VOCs (including CVOCs) in samples of the soil gas are quantitatively addressed in this FRC in order to evaluate the potential inhalation exposure through a diffusion model that estimates the concentrations of the detected VOCs in air and

22

compares the estimated concentrations in air to the RDLs. In addition, the estimated indoor air concentrations were assessed with respect to potential human health risk factors that include Excess Lifetime Cancer Risk (ELCR) for the VOCs that are considered carcinogens and Hazard Index (HI) for those compounds that are identified by the MADEP as non-carcinogens. Finally, the detected levels of VOCs in the tested soil gas samples were evaluated for a potential residential usage of the upper floors of the proposed commercial buildings.

6.3 EXPOSURE ASSESSMENT

This FRC is focused mainly on the evaluation of the risk of harm during the implementation of the proposed RAM activities at the eastern portion of the Subject Site because most of the excavation will occur as incidental to the construction of the proposed buildings and other site development elements. Excavation activities across the western portion of the Subject Site will mostly be limited to surficial grading and other preparatory work. Finally, the potential risk of harm to human health has also been evaluated for anticipated post-remediation Subject Site uses and activities.

• Exposure During RAM Activities. During implementation of the RAM in conjunction with the proposed construction potential human receptors which may be present include: construction and/or utility workers, adult visitors, adult and children trespassers and the general public as passers-by or occupants of near-by residences. During the conduct of the RAM and during construction excavation, exposure to the COCs may occur in the ambient air via inhalation of the COCs detected in the tested samples of soil gas or by inhalation of the COCs entrained in dust particles. Additional human exposure routes that are considered relevant to this FRC are direct contact and incidental ingestion.

It should be noted that in order to manage the potential risk that may be associated with the above exposures, a Site-Specific Health and Safety Plan that will be prepared for the conduct of construction activities will contain provisions for usage of appropriate personal protective equipment (PPE) and for implementation of risk-mitigating measures, if required.

23

The identified human receptors that are not construction-related but may be present in the vicinity of the Subject Site during the RAM activities such as occasional trespassers (including children), visitors and passers-by, would likely be exposed at significantly lower frequencies and potential intensities. Potential exposures to vapors of the COCs in ambient air were evaluated by comparison of the estimated concentrations in air to the laboratory reported detection limits (RDLs). The use of the RDLs as the risk estimation is considered appropriate because all of the RDLs are well below applicable inhalation risk factors. Given the relatively low levels of the COCs detected in the tested soil gas samples which result in yet lower levels in the ambient air due to dispersion and dilution, and the distance between the Subject Site and nearby residences, quantitative evaluation of the potential exposure by residents in nearby residences to the VOCs in air is considered not necessary. The already low estimated levels of VOCs in air are expected to be significantly reduced as a result of dispersion thus rendering this exposure pathway incomplete or insignificant. However, the potential for direct contact or incidental ingestion by visitors, trespassers or by passers-by are addressed in this FRC separately.

- **Exposure by Future Site Workers or Occupants**. This exposure potential is addressed in Section 6.6 below.
- Exposure Point Concentrations (EPCs). The EPCs were identified pursuant to the provisions contained in Section 40.0926 of the MCP. EPCs are defined in the MCP as the concentrations of the COCs in each identified environmental medium with which human or ecological receptors may come in contract at the point of exposure. The soil EPCs are summarized in TABLE 3. The maximum detected levels of the COCs in the tested groundwater samples are considered EPCs as shown TABLE 4. For the VOCs that were detected in the tested soil gas samples, the EPCs were identified as the maximum detected concentrations (refer to TABLES 1 and 2).

Environmental

Air Quality

6.4 FOCUSED RISK CHARACTERIZATION

The detected levels of CVOCs in the tested groundwater samples and their potential indoor or outdoor air impacts is evaluated through the results of the soil gas analyses that are considered reflective of the potential for migration of vapors of VOCs as a result of partitioning from the groundwater through the soil vadoze zone. Concentrations of VOCs in air were estimated based on the results of the soil gas analyses (**TABLES 1** and **2**) utilizing the US EPA air simulation model (2006) and are summarized in **TABLE 2A**. The estimated concentrations in air then were compared to the RDLs (**TABLE 2**). As shown in **TABLE 2A**, none of the estimated VOCs concentrations in air exceed the RDLs, thus it is concluded that any additional quantification of the risk of harm to construction workers, visitors, trespassers or passers-by due to potential exposure to vapors of the VOCs is not necessary and a qualitative risk evaluation is considered sufficient.

The current MADEP Method 3 Short Forms were used in this FRC for the estimation of the risks posed by the EPCs of the COCs detected in the tested soil samples to construction and/or utility workers and to occasional trespassers and passers-by during the conduct of the RAM. Pursuant to the provisions contained in Section 40.0933(6) of the MCP a condition of No Significant Risk of harm to human health exists at any disposal site if the identified cancer and non-cancer risk quotients do not exceed the limits established by the MADEP. For carcinogenic Excess Lifetime Cancer Risk (ELCR) the MADEP established a lower risk limit of one in one-hundred thousand (1.0E-05) and for non-cancer risk the MADEP established a lower Hazard Index (HI) limit of one (1).

The results of the risk quantification are contained in **APPENDIX B** and indicate the following:

- For construction workers the ELCR is 2E-07 and the cumulative HI is 1E-01;
- For occasional trespassers the ELCR is 2E-07, the chronic HI is 6E-03 and the sub-chronic HI is 1E-02.

25

Since none of the above risk quotients exceed the MADEP human health risk limits, VERTEX has concluded that a condition of No Significant Risk exists for construction workers and for occasional trespassers. In addition, because the exposure potential of occasional trespassers (within the site limits) is predicated upon an exposure period of 30 weeks at a frequency of 2 days per each week it is unlikely that an exposure by a passer-by (outside the site limits) for the same duration and frequency would result in greater risk quotients. Thus it is concluded that the condition of NSR that applies to trespassers also applies to passers-by or the general public who may be exposed outside the Subject Site limits. Similarly, the exposure by construction workers is predicated upon a frequency of 182 days per year for 8 hours per day which is significantly greater than the exposure potential by visitors or by utility workers. Therefore, the estimated risk quotients for construction workers would not under estimate the risk to visitors or utility workers.

Based on the results of the air simulation model and based on the information summarized above, VERTEX has concluded that a condition of No Significant Risk exists at the Subject Site for the implementation of the proposed RAM. However, it should be noted that RAM activities will be conducted in accordance with a Site-Specific Health and Safety Plan that will contain provisions for the implementation of risk-mitigating measures based upon actual conditions disclosed during the conduct of the RAM.

In addition, VERTEX has concluded that further quantification of the risk of harm to the general public as passers-by, visitors, and occasional trespassers is not necessary because: (1) the potential exposure by construction workers (183 days per year, 5 days per week and 8 hours per day) is of a significantly longer duration, frequency and intensity than the anticipated exposure by visitors, occasional trespassers or passers-by, and (2) a condition of No Significant Risk of harm to construction workers is considered to exist at the Subject Site, predicated upon an unrestricted exposure. Therefore, the results of any quantification of the risk of harm to the occasional human receptors would result in significantly lower risk quotients. Thus, it is concluded that a condition of No Significant Risk exists for the identified occasional human receptors.

26

6.5 ENVIRONMENTAL MONITORING

Based on the above conclusion that a condition of No Significant Risk of harm to human health exists for the COCs identified in the tested soil samples, it is concluded that quantification of dust action levels or instrument monitoring of the dust in ambient air are not required. However, conservatively, VERTEX will implement a program of dust monitoring utilizing a Mini-RAE dust monitor with an action level of 0.15 mg/m³ (US EPA/600/P-95/002 – Exposure Factors, 1997). In addition, the Site-Specific Health and Safety Plan will contain provisions for dust management as a source of nuisance if visual observations indicate a potential for off-site migration of dust. Provisions for other environmental monitoring, such as instrument measurements of total VOCs (TVOCs) in ambient air or odor control, will also be included in the Site-Specific Health and Safety Plan to address conditions that may be disclosed during the conduct of the RAM.

Finally, appropriate erosion control measures, such as installation of silt fences and hay bales, will be implemented during the performance of the RAM in order to mitigate potential off-site migration of the Subject Site soil as a result of precipitation events.

6.6 RISK OF HARM TO FUTURE SITE WORKERS, USERS AND/OR OCCUPANTS

As noted above, the proposed redevelopment of the eastern portion of the Subject Site includes the demolition of the existing former Raytheon facility and construction of mixed-use commercial establishments including retail stores and offices. A potential residential usage of the upper floors of the proposed commercial buildings is considered. In addition, future development plans for the western portion of the Subject Site include multi-unit residences and a two-acre public open space. The proposed buildings will be constructed as "slab-on-grade" and will have no below-grade structures except for utilities or infrastructure.

Portions of the eastern portion of the Subject Site not occupied by the footprint of the proposed buildings will be paved and utilized as parking lots with landscaped margins. Most of the soil will be situated beneath the footprint of the proposed buildings, paved areas or landscaped margins.

27

80

Therefore, subsequent to the completion of the proposed redevelopment, most of the Subject Site soils will be categorized pursuant to 310 CMR 40.0933(9) as Isolated Subsurface Soils and relatively minor portions of the Subject Site soils will be categorized as Potentially Accessible Soils.

Occasional future exposures to the Subject Site soils by construction and/or utility workers, and by future site workers, trespassers, the general public and visitors could occur during temporary utility work or other excavation activities (in response to emergency or utility maintenance) that are typically of limited duration. Based on the results of the FRC above that indicate the existence of a condition of No Significant Risk for construction and/or utility workers, visitors, passers-by and for occasional trespassers, it is concluded that the existing condition of No Significant Risk would continue to be applicable to the occasional future exposures during temporary excavation activities. In addition, an evaluation of the risk of harm for a potential usage of a portion of the western portion of the Subject Site as a public open space was conducted utilizing the current MADEP Method 3 Short Forms for park visitors (refer to **APPENDIX B**). The results of the risk quantification indicate that the EPCs of the COCs identified in the tested soil samples pose No Significant Risk of harm for park visitors, including children. Specifically, the estimated ELCR is 3E-06, the chronic HI is 6E-02 and the sub-chronic HI is 1E-01. None of these risk quotients exceed the MADEP lower risk limits.

Any additional quantification under this RAM Plan of the risk of harm to potential future workers or the general public that may be posed by the COCs in soil is considered not necessary because the frequency of exposure and its potential intensity by construction workers during the conduct of the RAM (in conjunction with the proposed redevelopment) is significantly greater than the potential exposure by future site workers or the general public thus mitigating the potential for underestimation of the risk of harm under future occasional or short duration exposures.

Based on the above, the main exposure pathway that is considered applicable to the evaluation of the risk of harm to future site workers, occupants or potential residents of the upper floors of the proposed commercial buildings at the eastern portion of the Subject Site is inhalation of the VOCs detected in the tested soil gas samples as a result of potential migration into indoor air. To assess the potential for indoor air impacts, a US EPA air simulation model (2006) was utilized to estimate

the potential human health risk quotients. Results are summarized in **TABLE 5**. The human health risk quotients are based on a residential exposure frequency of 365 days per year with an averaging time of 70 years for carcinogens and 30 years for non-carcinogens.

As shown in **TABLE 5**, none of the estimated ELCR or HI quotients exceed the human health risk limits established by the MADEP. In addition, the cumulative cancer risk quotients for ELCR (3.12E-06) and the cumulative non-cancer HI (8.12E-02) are well below the above referenced MADEP risk limits.

Thus it is concluded that the detected concentrations of VOCs in the tested soil gas samples are not anticipated to pose a significant risk of harm to future occupants or workers at the eastern portion of the Subject Site or to potential residents of the upper floors of the commercial buildings. It should be noted that pursuant to the provisions contained in Section 40.0900 of the MCP a comprehensive Risk Characterization will be performed for the Subject Site upon completion of the RAM activities in support of a Response Action Outcome (RAO) Statement. It is anticipated that the RAM will result in a condition of No Significant Risk predicated upon a Permanent Solution, as defined in the MCP.

Finally, as noted above, a vapor barrier and infrastructure for sub-slab venting systems will be installed within the footprints of all of the proposed residential buildings and potentially within the footprints of the proposed commercial buildings to mitigate potential vapor intrusion into the indoor space of the buildings. Therefore, upon completion of the installation of the venting system infrastructure and the vapor barrier this exposure pathway will be considered incomplete and thus by definition, pose No Significant Risk of harm to human health.

Environmental

Air Quality

7.0 FOCUSED FEASIBILITY EVALUATION

An evaluation of the feasibility to achieve or approach background was performed as part of this RAM Plan. The feasibility evaluation was conducted pursuant to the provisions contained in Section 40.0442(3)(c) of the MCP and in accordance with MADEP Policy WSC-04-160.

Based on the current Subject Site redevelopment plans, the soil generated during excavation activities will be re-used on-site and only a small amount of soil is considered as a contingency for off-site disposal. As noted above, the objective of the RAM is to implement on-site reuse of the soil that will be excavated during the installation of foundations, utilities and infrastructure. Such soil will be reused on-site as backfill material. As noted above, the results of the Focused Risk Characterization indicate that a condition of No Significant Risk already exists for the Subject Site soil under unrestricted exposure scenarios. Therefore, given the significant costs of any additional excavation, off-site disposal and replacement with fill material from an off-site source, the results of a cost-benefit evaluation [(310 CMR 40.0860(7)] indicate that the costs of any additional excavation, beyond what is required for the redevelopment of the Subject Site, are significantly disproportionate to the little risk-reduction benefits.

Finally, the results of the estimation of the risk of harm to human health posed by the detected concentrations of VOCs in the tested soil gas samples indicate that the estimated risk quotients are well below the MCP risk limits (refer to **TABLE 5**) for carcinogens and for non-carcinogens thus there is no evidence for the presence of a condition described in the MCP as Critical Exposure Pathway (CEP). In the absence of a CEP, and since the objective of the RAM is to achieve a Permanent Solution it is concluded that implementation of any additional remedial action, beyond the scope of this RAM Plan, would result in a risk-reduction benefit that is insignificant but would require significantly disproportionate costs and effort.

Based on the above, VERTEX has concluded that the requirements of the MCP with regards to feasibility evaluation had been met and it is further concluded that conduct of any additional remedial action, beyond the provisions of the proposed RAM, is infeasible.

30

8.0 QUALIFICATIONS

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with customary principles and practices in the fields of environmental science and engineering. This warranty is in lieu of all other warranties either expressed or implied. VERTEX is not responsible for the independent conclusions, opinions or recommendations made by others based on the field exploration and laboratory test data presented in this report. Our professional opinion and the conclusions contained herein are based solely on the scope of work conducted as described in this RAM Plan.

It must be recognized that environmental investigations are inherently limited in the sense that conclusions are drawn and recommendations developed from information obtained from limited research and site investigation. All site subsurface conditions were not field investigated as part of this study and may differ from the conditions described herein. Additionally, the passage of time may result in a change in the environmental characteristics at this site and surrounding properties. This report does not warrant against future operations or conditions, nor does this report warrant against operations or conditions present of a type or at a location not investigated.

The reference to various MCP or other risk-based cleanup standards contained in this report is intended to provide a focused evaluation of the risk of harm to human health for the conduct of the RAM and is not intended to be used as a comprehensive risk characterization as defined in the MCP, but rather to provide an assessment of the risk under focused exposures.

Environmental

Air Quality

DRAFT

TABLES

TABLE 1 - SUMMARY OF SOIL VAPOR ANALYSES

400 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS MADEP RTN 3-13302 VERTEX PROJECT No. 19163

SAMPLE DESIGNATION	SV-1	SV-2	SV-3	SV-4	SV-5	SVE-2	SV-11	SV-12	SV-13
LABORATORY ID	L0809833-01	L0809833-02	L0809833-03	L0809956-01	L0809956-02	L0809898-02	L0809960-01	L0809960-02	L0809960-03
SAMPLING DATE	1-Jul-08	1-Jul-08	1-Jul-08	2-Jul-08	2-Jul-08	3-Jul-08	3-Jul-08	3-Jul-08	3-Jul-08
VOCs	(µg/m3)								
1,1,1-Trichloroethane	ND(5.45)	ND(1.09)	ND(1.09)	ND(1.09)	ND(1.09)	7.93	25.2	2.32	4.38
1,2,4-Trichlorobenzene	ND(7.4)	ND(1.485)	7.43	ND(1.485)	ND(1.485)	ND(0.74)	ND(0.74)	ND(0.74)	ND(1.485)
1,2,4-Trimethylbenzene	ND(4.91)	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)	5.12	1.05	1.31	ND(0.98)
1,3,5-Trimethylbenzene	ND(4.91)	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)	1.88	ND(0.491)	ND(0.491)	ND(0.98)
1,4-Dichlorobenzene	ND(6)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.2)	2.02	ND(0.6)	ND(0.6)	ND(1.2)
2-Butanone	53.5	58.2	67.5	39.1	54.2	255	15	16	9.31
2-Hexanone	ND(4.095)	11	13.6	10.2	12.5	66.8	5.24	5.88	2.66
4-Ethyltoluene	ND(4.91)	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)	1.47	ND(0.491)	ND(0.491)	ND(0.98)
Acetone	1130	505	419	374	181	1850	43.6	51.3	74.4
Benzene	ND(3.19)	ND(0.64)	ND(0.64)	1.56	ND(0.64)	11.5	ND(0.319)	0.99	ND(0.64)
Carbon disulfide	ND(3.11)	1.6	ND(0.62)	ND(0.62)	ND(0.62)	15.4	ND(0.311)	0.648	ND(0.62)
Chloroethane	ND(2.635)	ND(0.525)	ND(0.525)	ND(0.525)	ND(0.525)	0.725	ND(0.2635)	ND(0.2635)	ND(0.525)
Chloroform	ND(4.88)	5.47	ND(0.975)	ND(0.975)	9.61	1.47	5.11	4.57	8.62
Chloromethane	ND(2.065)	ND(0.4125)	ND(0.4125)	ND(0.4125)	ND(0.4125)	1.78	ND(0.2065)	0.418	ND(0.4125)
Cyclohexane	ND(3.44)	ND(0.69)	ND(0.69)	ND(0.69)	ND(0.69)	1.67	ND(0.344)	ND(0.344)	ND(0.69)
Dichlorodifluoromethane	ND(4.94)	2.4	2.43	2.39	2.66	2.38	4.75	9.42	14.3
Ethanol	ND(23.55)	31.6	23.4	16.9	14.8	146	15.6	20	13.7
Ethylbenzene	ND(4.34)	ND(0.87)	ND(0.87)	ND(0.87)	ND(0.87)	4.41	ND(0.434)	1.19	ND(0.87)
Freon 113	ND(7.65)	ND(1.53)	ND(1.53)	ND(1.53)	ND(1.53)	1.57	1.93	ND(0.765)	ND(1.53)
Isopropanol	65.4	41.7	17.8	32.3	12.6	17.1	3.64	4.98	3.81
Methylene chloride	17.4	4.54	4.51	4.38	4.29	3.91	3.27	4.54	4.07
4-Methyl-2-pentanone	ND(4.095)	ND(0.82)	ND(0.82)	ND(0.82)	ND(0.82)	9.89	0.982	1.31	ND(0.82)
m/p-Xylene	ND(8.7)	3.9	ND(1.735)	ND(1.735)	ND(1.735)	11	2.95	3.98	ND(1.735)
o-Xylene	ND(4.34)	ND(0.87)	ND(0.87)	ND(0.87)	ND(0.87)	4.88	1.04	1.55	ND(0.87)
Heptane	ND(4.095)	ND(0.82)	1.8	2.6	ND(0.82)	12.4	ND(0.4095)	0.874	ND(0.82)
n-Hexane	9.67	8.11	8.49	6.21	6.64	13.3	1.97	4.66	ND(0.705)
Propylene	ND(1.72)	3.76	3.37	2.26	1.75	49.4	ND(0.172)	ND(0.172)	ND(0.344)
Styrene	ND(4.255)	ND(0.85)	ND(0.85)	ND(0.85)	ND(0.85)	1.65	ND(0.4255)	ND(0.4255)	ND(0.85)
Tetrachloroethylene	44.3	29.9	13.7	ND(1.355)	22.2	107	32.5	13.3	59.3
Tetrahydrofuran	ND(2.945)	ND(0.59)	ND(0.59)	ND(0.59)	ND(0.59)	ND(0.2945)	2.39	2.53	1.62
Toluene	ND(3.765)	6.31	3.87	3.61	3.85	19	3.34	6.95	3.22
Trichloroethylene	20.5	29.1	9.24	5.9	59	99.4	8.83	96.4	79.7
Trichloroflouromethane	111	241	149	86	434	16.7	847	398	345
Vinyl acetate	ND(3.52)	4.32	7.39	2.31	2.88	47.7	ND(0.352)	ND(0.352)	ND(0.705)

Notes:

1. ND(XX) = Not detected (O.5 RDL).

2. Table limited to compounds detected

3. Samples collected by Haley & Aldrich, Inc.

TABLE 2 - SUMMARY OF SOIL GAS CONTAMINANTS OF CONCERN AND EXPOSURE POINT CONCENTRATIONS

430 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS MADEP RTN 3-13302 VERTEX PROJECT No. 19163

			ESTIMATED	
DETECTED			AMBIENT AIR	METHOD TO-15
CONTAMINANT IN SOIL	CAS	SOIL GAS EPC	CONCENTRATION	DETECTION
GAS	NUMBER	$(\mu g/m^3)$	$(\mu g/m^3)$	LIMITS (µg/m ³)
1,1,1-Trichloroethane	71-55-6	2.5E+01	5.9E-06	1.1E+00
1,2,4-Trichlorobenzene	120-82-1	7.4E+00	1.7E-06	1.5E+00
1,2,4-Trimethylbenzene	95-63-6	5.1E+00	1.2E-06	1.0E+00
1,3,5-Trimethylbenzene	108-67-8	1.9E+00	4.4E-07	1.0E+00
1,4-Dichlorobenzene	106-46-7	2.0E+00	4.8E-07	1.2E+00
2-Dichlorobenzene	78-93-3	2.6E+02	6.0E-05	6.0E-01
2-Hexanone	591-78-6	6.7E+01	3.2E-06	8.3E-01
4-Ethyltoluene	622-96-8	1.5E+00	1.8E-07	9.8E-01
Acetone	67-64-1	1.9E+03	4.4E-04	4.8E-01
Benzene	71-43-2	1.2E+01	2.7E-06	6.5E-01
Carbon disulfide	75-15-0	1.5E+01	3.6E-06	6.3E-01
Chloroethane	75-00-3	7.3E-01	1.7E-07	5.4E-01
Chloroform	67-66-3	9.6E+00	2.3E-06	9.9E-01
Chloromethane	74-87-3	1.8E+00	4.2E-07	4.2E-01
Cyclohexane	110-82-7	1.7E+00	7.2E-08	7.0E-01
Dichlorodifluoromethane	75-71-8	1.4E+01	3.4E-06	1.0E+00
Ethanol	64-17-5	1.5E+02	2.3E-02	2.8E-01
Ethylbenzene	100-41-4	4.4E+00	1.1E-06	8.8E-01
Freon 113	76-13-1	1.9E+00	1.5E-05	1.6E+00
Isopropanol	67-63-0	6.5E+01	7.9E-02	5.0E-01
Methylene chloride	75-09-2	1.7E+01	4.1E-06	7.1E-01
4-Methyl-2-pentanone	108-10-1	9.9E+00	2.3E-06	8.3E-01
m/p-Xylene	108-38-3	1.1E+01	2.6E-06	8.8E-01
o-Xylene	95-47-6	4.9E+00	1.5E-06	8.8E-01
Heptane	142-82-5	1.2E+01	3.9E-07	8.3E-01
n-Hexane	110-54-3	1.3E+01	6.8E-08	7.2E-01
Propylene	115-07-1	4.9E+01	1.2E-05	3.5E-01
Styrene	100-42-5	1.7E+00	3.9E-07	8.7E-01
Tetrachloroethylene	127-18-4	1.1E+02	2.5E-05	1.4E+00
Tetrahydrofuran	109-99-9	2.5E+00	7.9E-04	6.0E-01
Toluene	108-88-3	1.9E+01	4.5E-06	7.7E-01
Trichloroethylene	79-01-6	9.9E+01	2.3E-05	1.1E+00
Trichloroflouromethane	75-69-4	8.5E+02	2.0E-04	1.1E+00
Vinyl acetate	108-05-4	4.8E+01	1.3E-05	7.2E-01

Notes:

1. The soil vapor Exposure Point Concentration (EPC) is the maximum detected level.

2. Predicted ambient air concentrations were estimated using

US EPA Air Simulation - 2006 (TABLE 2A)

430 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS MADEP RTN 3-13302 VERTEX PROJECT No. 19163

	DIFFUSION 1	MODEL ASSUN	APTIONS						
DETECTED CONTAMINANT	EXCAVATION AREA (m2)	BREATHING ZONE HEIGHT (cm)	DEPTH TO SOIL GAS SOURCE (cm)	DIFFUSION	SOIL GAS CONCENTRATION (EPC) (mg/m3)	SOIL GAS TO AIR ATTENUATION FACTOR	ESTIMATED AMBIENT AIR CONCENTRATION (ug/m3)	METHOD TO-15 DETECTION LIMITS (mg/m3)	EXCEEDENCE OF REPORTED DETECTION LIMIT (RDL)
SOIL GAS									
1,1,1-Trichloroethane	1,000	125	33	1.30E-02	2.52E-02	2.4E-07	5.9E-06	1.11E-03	NO
1,2,4-Trichlorobenzene	1,000	125	33	5.00E-03	7.43E-03	2.2E-07	1.7E-06	1.51E-03	NO
1,2,4-Trimethylbenzene	1,000	125	33	9.80E-03	5.12E-03	2.3E-07	1.2E-06	1.00E-03	NO
1,3,5-Trimethylbenzene	1,000	125	33	9.70E-03	1.88E-03	2.4E-07	4.4E-07	1.00E-03	NO
1,4-Dichlorobenzene	1,000	125	33	1.10E-02	2.02E-03	2.4E-07	4.8E-07	1.23E-03	NO
2-Butanone	1,000	125	33	1.30E-02	2.55E-01	2.4E-07	6.0E-05	6.01E-04	NO
2-Hexanone	1,000	125	33	3.20E-02	6.68E-02	2.4E-07	3.2E-06	8.35E-04	NO
4-Ethyltoluene	1,000	125	33	2.10E-02	1.47E-03	2.6E-07	1.8E-07	9.75E-04	NO
Acetone	1,000	125	33	2.10E-02	1.85E+00	2.3E-07	4.4E-04	4.83E-04	NO
Benzene	1,000	125	33	1.50E-02	1.15E-02	2.4E-07	2.7E-06	6.51E-04	NO
Carbon disulfide	1,000	125	33	1.70E-02	1.54E-02	2.4E-07	3.6E-06	6.35E-04	NO
Chloroethane	1,000	125	33	4.40E-02	7.25E-04	2.4E-07	1.7E-07	5.38E-04	NO
Chloroform	1,000	125	33	1.70E-02	9.61E-03	2.4E-07	2.3E-06	9.95E-04	NO
Chloromethane	1,000	125	33	2.10E-02	1.78E-03	2.3E-07	4.2E-07	4.21E-04	NO
Cyclohexane	1,000	125	33	3.10E-02	1.67E-03	2.7E-07	7.2E-08	7.02E-04	NO
Dichlorodifluoromethane	1,000	125	33	1.10E-02	1.43E-02	2.5E-07	3.4E-06	1.01E-03	NO
Ethanol	1,000	125	33	9.00E-03	1.46E-01	2.3E-07	2.3E-02	2.83E-04	NO
Ethylbenzene	1,000	125	33	1.20E-02	4.41E-03	2.4E-07	1.1E-06	8.85E-04	NO
Freon 113	1,000	125	33	1.00E-02	1.93E-02	2.7E-07	1.5E-05	1.56E-03	NO
Isopropanol	1,000	125	33	1.40E-02	6.54E-02	2.4E-07	7.9E-02	5.00E-04	NO
Methylene chloride	1,000	125	33	1.60E-02	1.74E-02	2.4E-07	4.1E-06	7.08E-04	NO
4-Methyl-2-pentanone	1,000	125	33	1.20E-02	9.89E-03	2.3E-07	2.3E-06	8.35E-04	NO
m/p-Xylene	1,000	125	33	1.40E-02	1.10E-02	2.4E-07	2.6E-06	8.84E-04	NO
o-Xylene	1,000	125	33	1.40E-02	4.88E-03	2.4E-07	1.5E-06	8.85E-04	NO
Heptane	1,000	125	33	1.10E-02	1.24E-02	2.3E-07	3.9E-07	8.33E-04	NO
n-Hexane	1,000	125	33	3.10E-02	1.33E-02	2.4E-07	6.8E-08	7.18E-04	NO
Propylene	1,000	125	33	9.70E-03	4.94E-02	2.3E-07	1.2E-05	3.50E-04	NO
Styrene	1,000	125	33	1.20E-02	1.65E-03	2.3E-07	3.9E-07	8.68E-04	NO
Tetrachloroethylene	1,000	125	33	1.20E-02	1.07E-01	2.3E-07	2.5E-05	1.38E-03	NO
Tetrahydrofuran	1,000	125	33	1.30E-02	2.53E-03	2.6E-07	7.9E-04	6.01E-04	NO
Toluene	1,000	125	33	1.40E-02	1.90E-02	2.4E-07	4.5E-06	7.68E-04	NO
Trichloroethylene	1,000	125	33	1.30E-02	9.94E-02	2.4E-07	2.3E-05	1.09E-03	NO
Trichloroflouromethane	1,000	125	33	1.40E-02	8.47E-01	2.4E-07	2.0E-04	1.15E-03	NO
Vinyl acetate	1,000	125	33	1.40E-02	4.77E+00	2.4E-07	1.3E-05	7.18E-04	NO

NOTES: (1) Model utilized: US EPA Air Similation Model (2006)

(2) Table limited to detected analytes

430 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS RTN 3-13302 VERTEX PROJECT No. 19163

SAMPLE DESIGNATION SAMPLING DATE SAMPLE DEPTH (ft.) LAB SAMPLE 1D	MCP Method 1 S-1/GW-1 Standard	MADEP Background for "Natural" Soil	Exposure Point Concentration	SB-1 13-Oct-95 3.5'-5.5'	SB-3 13-Oct-95 18'-20'	SB-4 13-Oct-95 3.9'-6.8'	SB-5 13-Oct-95 6.5'-8.5'	SB-8 13-Oct-95 10.5'-12.5'	SB-8 13-Oct-95 6.5'-8.5'	SB-8 13-Oct-95 8.5'-10.5'	SB-8 13-Oct-95 4.5'-6.5'	SB-8A 13-Oct-95 4.5'-6.5'	SB-8A 13-Oct-95 8.5'-10.5'	SB-9 13-Oct-95 3.5'-5.5'	HA SS-1 11-Oct-00 0-3'	HA SS-2 11-Oct-00 0-3'	HA SS-3 11-Oct-00 0-3'	HA SS-4 11-Oct-00 0-3'	HA SS-5 11-Oct-00 0-3'	HA SS-6 11-Oct-0 0-3'
Volatile Organic Compounds (ug/kg)																				
Tetrachloroethene	1000	NA NA	32			1	I	1	1		l				Γ	1	1	[I	T
Trichloroethene	300	NA	61.8	1	· · · · · · · · · · · · · · · · · · ·		1	1	1											1
cis-1,2-Dichloroethene	300	NA	38.4	1	1		1													1
trans-1,2-Dichloroethene	1000	NA	1.2					1								1		1	1	1
Toluene	30000	NA	1.2	1											1	1	l	<u> </u>	1	1
Acetone	6000	NA	26.7						1	1	1				1		1		1	
p-Isopropyltoluene	NS	NA	1.4	1				1			İ				1	1			1	1
Chlorobenzene	1000	NA	5.6	1					1	· · · · · · · · · · · · · · · · · · ·	İ				Î	1	1	1	1	
1,4-Dichlorobenzene	700	NA	7.8	1			· · · · · ·		1		İ						<u></u>		1	1
Extractable Petroleum Hydrocarbons (mg/kg) C19-C36 Aliphatics	3000	NA	32.5	1	I]					· · ·				T	1
C11-C22 Aromatics, Adjusted	1000	NA	14.1				1												1	
C9-C18 Aliphatics	1000	NA	ND		<u> </u>															
Polychlorinated Biphenyls by MCP 8082 (mg/kg)	2	NA	ND																	
Total Metals by MCP 6000/7000 series (mg/kg)																				
Arsenic, Total	20	20	6.6	5.96	6.6	3.56	7.2	4.8	5.2	4.4	29	2.8	3.5	4.73	ND(2.8)	ND(2.7)	ND(2.7)	ND(2.7)	ND(2.7)	7.5
Barium, Total	1000	50	28.2												1				1	1
	30	30	11.5	1			1										1		1	1
Chromium, Total																				

Notes: ND(1): Not detected. (0.5 RDL) NA: Not applicable Table limited to detected contaminants Samples collected by Haley & Aldrich, Inc. and ERM Blank - Not Tested

1

430 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS RTN 3-13302 VERTEX PROJECT No. 19163

SAMPLE DESIGNATION	HA SS-7	HA SS-7	HA SS-8	HA SS-9	HA SS-10	HA SS-11	HA SS-12	HA SS-13	HA SS-13	B-301	B-302	B-303	B-304	B-305	B-306	B-307	B-308	B-309	B-310	B-311	B-312	B-316
SAMPLING DATE	11-Oct-00	11-Oct-00	11-Oct-00	11-Oct-00	11-Oct-00	11-Oct-00	11-Oct-00	11-Oct-00	11-Oct-00	19-Aug-02	19-Aug-02	19-Aug-02	19-Aug-02	19-Aug-02	19-Aug-02	19-Aug-02	19-Aug-02	19-Aug-02	19-Aug-02	19-Aug-02	19-Aug-02	9-Sep-0
SAMPLE DEPTH (ft.)	0-3'	DUP	0-3'	0-3'	0-3'	0-3'	0-3'	0-3'	DUP	0'-5'	0'-5'	0'-5'	0'-5'	0'-5'	0'-5'	0'-5'	0'-5'	0'-5'	0'-5'	0'-5'	0'-5'	0'-5'
LAB SAMPLE 1D																						1
Volatile Organic Compounds (ug/kg)																						
Tetrachloroethene					1																	1
Trichloroethene																		1				1
cis-1,2-Dichloroethene					1		1							T								í
trans-1,2-Dichloroethene						1																í
Toluene		1		1	1	1	1		· ·					1								í
Acetone p-Isopropyltoluene Chlorobenzene							1	1							1							(
p-Isopropyltoluene		1				1	1	ĺ	1			ĺ		1	[1	í
Chlorobenzene			1		<u> </u>			-						1	1							(
1,4-Dichlorobenzene		1						1				1										(
Extractable Petroleum Hydrocarbons (mg/kg) C19-C36 Aliphatics]	ſ																	
C11-C22 Aromatics, Adjusted																				~		
C9-C18 Aliphatics																						(
Polychlorinated Biphenyls by MCP 8082 (mg/kg)			Ι	I																		L
Total Metals by MCP 6000/7000 series (mg/kg)																						
Arsenic, Total	ND(2.9)	ND(2.9)	7.2	12	2.80	ND(2.7)	ND(2.8)	7.3	5.9	6.3	5.7	5.8	5.4	6,0	6.3	6.4	6.4	5.3	5.7	5.1	36	5.5
Barium, Total																						í
Chromium, Total																						í
Lead, Total				T																		í
						*																
Notes:																						
ND(1): Not detected. (0.5 RDL)																						

ND(1): Not detected. (0.5 RDL) NA: Not applicable Table limited to detected contaminants Samples collected by Haley & Aldrich, Inc. and ERM Blank - Not Tested 430 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS RTN 3-13302 VERTEX PROJECT No. 19163

SAMPLE DESIGNATION	B-317	B-318	B-522	Comp20060201	MW-313	MW-314	MW-315	SW-117-003	SW-117-009	SW-117-018	SW-117-021	SW-117-027	SW-117-023	SW-117-039	SW-117-045	SW-117-051	SW-117-057	SW-117-063	SW-117-069	SW-117-075	SW-117-081	SW-117-08
SAMPLING DATE	9-Sep-02	9-Sep-02	1-Feb-06	1-Feb-06	26-Aug-02	26-Aug-02	26-Aug-02	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06
SAMPLE DEPTH (ft.)	0'-5'	0'-5'	10'-15'	Composite	5'-7'	5'-7'	5'-7'	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall
LAB SAMPLE 1D																						
				-			<u> </u>					•					-					•
Volatile Organic Compounds (ug/kg)																						_
Tetrachloroethene								ND(1.0)	4.6	9.2	ND(1.0)	1.9	2.8	5.9	75	1.2	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.1)	ND(1.2)
Trichloroethene								7.5	6.5	59	ND(1.0)	2.1	2.5	19	230	ND(1.1)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.1)	ND(1.2)
cis-1,2-Dichloroethene								ND(1.0)	ND(1.0)	12	ND(1.0)	3.7	6.8	19	180	ND(1.1)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.1)	ND(1.2)
trans-1,2-Dichloroethene								ND(1.6)	ND(1.6)	ND(1.6)	ND(1.6)	ND(1.5)	ND(1.6)	ND(1.3)	ND(1.8)	ND(1.6)	ND(1.8)	ND(1.8)	ND(1.7)	ND(1.7)	ND(1.6)	ND(1.8)
Toluene								ND(1.6)	ND(1.6)	ND(1.6)	ND(1.6)	ND(1.5)	ND(1.6)	ND(1.3)	ND(1.8)	ND(1.6)	ND(1.8)	ND(1.8)	ND(1.7)	ND(1.7)	ND(1.6)	ND(1.8)
Acetone								ND(10)	18	15	ND(10)	19	22	44	46	17	ND(12)	ND(12)	47	13	21	56
ieecone						1		1.4	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.1)	ND(0.88)	ND(1.2)	ND(1.1)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.1)	ND(1.2)
													NTD(1,1)	ND(0.88)		NTX(1.1)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.1)	ND(1.2)
p-Isopropyltoluene					1			ND(10)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.1)	ND(0.88)	ND(1.2)	ND(1.1)	ND(1.2)	[ND(1.2)	[IND(1.2)	1 1 1 (1.2)	[ND(1.1)	110(1.2)
p-Isopropyltoluene								ND(10) ND(10)	ND(1.0) ND(1.0)	ND(1.0) ND(1.0)	ND(1.0) ND(1.0)	ND(1.0) ND(1.0)	ND(1.1) ND(1.1)	ND(0.88) ND(0.88)	ND(1.2) ND(1.2)	ND(1.1)	ND(1.2) ND(1.2)	ND(1.2)	ND(1.2)	ND(1.2)	ND(1.1)	
p-Isopropyltoluene Chlorobenzene 1,4-Dichlorobenzene Extractable Petroleum Hydrocarbons (mg/kg)				 		 																
p-Isopropyltoluene Chlorobenzene 1,4-Dichlorobenzene Extractable Petroleum Hydrocarbons (mg/kg) C19-C36 Aliphatics																						
p-Isopropyltoluene Chlorobenzene 1,4-Dichlorobenzene Extractable Petroleum Hydrocarbons (mg/kg) C19-C36 Aliphatics C11-C22 Aromatics, Adjusted																						
p-Isopropyltoluene Chlorobenzene																						ND(1.2)
p-Isopropyltoluene Chlorobenzene 1,4-Dichlorobenzene Extractable Petroleum Hydrocarbons (mg/kg) C19-C36 Aliphatics C11-C22 Aromatics, Adjusted C9-C18 Aliphatics Polychlorinated Biphenyls by MCP 8082 (mg/kg)																						
p-Isopropyltoluene Chlorobenzene 1,4-Dichlorobenzene Extractable Petroleum Hydrocarbons (mg/kg) C19-C36 Aliphatics C11-C22 Aromatics, Adjusted C9-C18 Aliphatics Polychlorinated Biphenyls by MCP 8082 (mg/kg) Total Metals by MCP 6000/7000 series (mg/kg)	6.0	51	4.9	5.6	ND(2.6)	5.1	ND(3.0)															
p-Isopropyltoluene Chlorobenzene 1,4-Dichlorobenzene Extractable Petroleum Hydrocarbons (mg/kg) C19-C36 Aliphatics C11-C22 Aromatics, Adjusted C9-C18 Aliphatics Polychlorinated Biphenyls by MCP 8082 (mg/kg) Total Metals by MCP 6000/7000 series (mg/kg) Arsenic, Total	6.0	5.1	4.9	5.6	ND(2.6)	5,1	ND(3.0)															
p-Isopropyltoluene Chlorobenzene 1,4-Dichlorobenzene Extractable Petroleum Hydrocarbons (mg/kg) C19-C36 Aliphatics C11-C22 Aromatics, Adjusted C9-C18 Aliphatics Polychlorinated Biphenyls by MCP 8082 (mg/kg) Total Metals by MCP 6000/7000 series (mg/kg) Arsenic, Total Barium, Total	6.0	5.1	4,9	5.6	ND(2.6)	5,1	ND(3.0)															
p-Isopropyltoluene Chlorobenzene 1,4-Dichlorobenzene Extractable Petroleum Hydrocarbons (mg/kg) C19-C36 Aliphatics C11-C22 Aromatics, Adjusted C9-C18 Aliphatics	6.0	5.1	4.9	5.6	ND(2.6)	5,1	ND(3.0)															

ND(1): Not detected. (0.5 RDL) NA: Not applicable Table limited to detected contaminants Samples collected by Haley & Aldrich, Inc. and ERM Blank - Not Tested TABLE 3 - SUMMARY OF SOIL ANALYSES AND RISK DATA

430 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS RTN 3-13302 VERTEX PROJECT No. 19163

26-Jul-06		SW-117-109	SP-A1	SP-A2	SP-A3	SP-A4	SP-A5	SP-A6	SP-B1	SP-B2	SP-B3	SP-B4	SP-B5	SP-B6	SP-C1	SP-C2	SP-C3	SP-C4	SP-C5	SP-C6
	26-Jul-06	26-Jul-06	11-Jul-07	11-Jui-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-07	11-Jul-0
Sidewall	Sidewall	Sidewall	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpil
					•	•		•				•			-	-		-		
6.6	24	ND(0.81)	ND(1.0)	ND(1.0)	1.4	ND(0.97)	ND(0.98)	5.0	46	42	120	4.8	6.7	88	ND(1.1)	ND(0.97)	ND(0.95)	ND(1.2)	ND(1.2)	ND(1.1
87	ND(670)	20	ND(1.0)	ND(1.0)	ND(0.96)	ND(0.97)	ND(0.98)	ND(1.0)	110	50	39	4.3	27	220	ND(1.1)	ND(0.97)	ND(0.95)	1.2	1.2	220
12	5.9	ND(0.81)	ND(1.0)	ND(1.0)	ND(0.96)	ND(0.97)	ND(0.98)	ND(1.0)	70	48	62	5.0	23	130	ND(1.1)	ND(0.97)	ND(0.95)	1.7	ND(1.2)	1.2
ND(1.9)	1.2	ND(1.2)																		
ND(1.9)	1.2	ND(1.2)	ND(1.5)	ND(1.5)	ND(1.4)	ND(0.15)	ND(1.5)	ND(1.5)	ND(1.6)	ND(1.6)	ND(1.6)	ND(1.6)	ND(1.6)	ND(1.7)	ND(1.6)	ND(1.4)	ND(1.4)	ND(1.7)	ND(1.9)	ND(1.6
17	28	15	ND(10)	ND(10)	24	ND(9.7)	ND(9.8)	23	16	46	14	ND(11)	ND(11)	25	ND(11)	ND(9.7)	ND(9.5)	ND(12)	ND(12)	ND(11)
ND(1.3)	ND(0.79)	ND(0.81)																		
ND(1.3)	ND(0.79)	ND(0.81)																		
ND(1.3)	ND(0.79)	ND(0.81)																		
															[]					
·																				
		,																		
	87 12 ND(1.9) ND(1.9) 17 ND(1.3)	87 ND(670) 12 5.9 ND(1.9) 1.2 ND(1.9) 1.2 17 28 ND(1.3) ND(0.79) ND(1.3) ND(0.79)	87 ND(670) 20 12 5.9 ND(0.81) ND(1.9) 1.2 ND(1.2) ND(1.9) 1.2 ND(1.2) 17 28 15 ND(1.3) ND(0.79) ND(0.81) ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) 12 5.9 ND(0.81) ND(1.0) ND(1.9) 1.2 ND(1.2) ND(1.9) 1.2 ND(1.2) ND(1.3) ND(0.79) ND(0.81) ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(1.0) 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(1.9) 1.2 ND(1.2) ND(1.9) ND(1.2) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.5) 17 28 15 ND(10) ND(10) ND(1.3) ND(0.79) ND(0.81) ND(1.3)	87 ND(670) 20 ND(1.0) ND(1.0) ND(0.96) 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(1.9) 1.2 ND(1.2) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) 17 28 15 ND(10) ND(10) 24 ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(1.0) ND(0.96) ND(0.97) 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(1.9) 1.2 ND(1.2) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) 17 28 15 ND(10) ND(10) 24 ND(9.7) ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) 17 28 15 ND(10) ND(10) 24 ND(9.8) ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) 17 28 15 ND(10) ND(10) 24 ND(9.7) ND(9.8) 23 ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 70 ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) ND(1.6) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) ND(1.6) 17 28 15 ND(10) ND(10) 24 ND(9.7) ND(9.8) 23 16 ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.97) ND(0.98) ND(1.0) 70 48 ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) ND(1.6) ND(1.6) 17 28 15 ND(10) ND(10) 24 ND(9.7) ND(9.8) 23 16 46 ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 70 48 62 ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) ND(1.6) ND(1.6) ND(1.6) 17 28 15 ND(10) ND(10) 24 ND(9.7) ND(9.8) 23 16 46 14 ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.51) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.6) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.6) 17 28 15 ND(10) ND(1.0) 24 ND(9.7) ND(9.8) 23 16 46 14 ND(11) ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.15) ND(1.5) ND(1.6) <	87 ND(670) 20 ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 220 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 130 ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(1.5) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.6) ND(1.6) ND(1.6) ND(1.7) 17 28 15 ND(10) ND(10) 24 ND(9.7) ND(9.8) 23 16 46 14 ND(11) ND(1.7) ND(1.3) ND(0.79) ND(0.81)	87 ND(670) 20 ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 220 ND(1.1) 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 130 ND(1.1) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.51) ND(1.5) ND(1.6) ND(1.6	87 ND(670) 20 ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 220 ND(1.1) ND(0.97) 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 130 ND(1.1) ND(0.97) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(0.51) ND(1.5) ND(1.5) ND(1.6) ND(1.7) ND(1.6) ND(1.4) ND(9.7) ND(9.8) 23 16 46 14 ND(1.1) ND(1.6) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(9.7) ND(9.7) ND(9.7) ND(9.7) ND(9.7) ND(9.7) ND(1.6) ND(1.6) ND(1.6) ND(1.6) ND(1.6) ND(1.6) ND(1.6) <t< td=""><td>87 ND(670) 20 ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 220 ND(1.1) ND(0.97) ND(0.95) 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 130 ND(1.1) ND(0.97) ND(0.95) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(1.5) ND(1.5) ND(1.5) ND(1.6) ND(1.4) ND(1.4) ND(1.5) ND(1.5) ND(1.6) ND(</td><td>87 ND(670) 20 ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 220 ND(1.1) ND(0.97) ND(0.95) 1.2 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 130 ND(1.1) ND(0.97) ND(0.95) 1.7 ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(1.5) ND(1.5) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.6) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.4) ND(1.7) ND(1.4) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.5) ND(1.5) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(1.7)</td></t<> <td>87 ND(670) 20 ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 220 ND(1.1) ND(0.97) ND(0.95) 1.2 1.2 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 130 ND(1.1) ND(0.97) ND(0.95) 1.7 ND(1.2) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.5) ND(1.5) ND(1.5) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.9) ND(1.4) ND(1.7) ND(1.9) ND(1.4) ND(1.7) ND(1.6) ND(1.6)</td>	87 ND(670) 20 ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 220 ND(1.1) ND(0.97) ND(0.95) 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 130 ND(1.1) ND(0.97) ND(0.95) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(1.5) ND(1.5) ND(1.5) ND(1.6) ND(1.4) ND(1.4) ND(1.5) ND(1.5) ND(1.6) ND(87 ND(670) 20 ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 220 ND(1.1) ND(0.97) ND(0.95) 1.2 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 130 ND(1.1) ND(0.97) ND(0.95) 1.7 ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.4) ND(1.5) ND(1.5) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.6) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.4) ND(1.7) ND(1.4) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.5) ND(1.5) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(1.7) ND(1.6) ND(1.7)	87 ND(670) 20 ND(1.0) ND(0.96) ND(0.97) ND(0.98) ND(1.0) 110 50 39 4.3 27 220 ND(1.1) ND(0.97) ND(0.95) 1.2 1.2 12 5.9 ND(0.81) ND(1.0) ND(1.0) ND(0.97) ND(0.98) ND(1.0) 70 48 62 5.0 23 130 ND(1.1) ND(0.97) ND(0.95) 1.7 ND(1.2) ND(1.9) 1.2 ND(1.2) ND(1.5) ND(1.5) ND(1.5) ND(1.5) ND(1.5) ND(1.6) ND(1.6) ND(1.6) ND(1.7) ND(1.6) ND(1.4) ND(1.7) ND(1.9) ND(1.4) ND(1.7) ND(1.9) ND(1.4) ND(1.7) ND(1.6) ND(1.6)

NA: Not applicable Table limited to detected contaminants Samples collected by Haley & Aldrich, Inc. and ERM Blank - Not Tested

430 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS RTN 3-13302 VERTEX PROJECT No. 19163

SAMPLE DESIGNATION	SP-G1	SP-G2	CF-1	CF-2	CF-3	CF-4	CF-5	CF-6	AB23	AB45	AB67	CD23-2	CD45	CD67	EF23	EF45	EF67	GH23	GH45	GH67	DE1-4	DE8
SAMPLING DATE	15-Aug-07	15-Aug-07	23-Aug-07	23-Aug-07	23-Aug-07	23-Aug-07	23-Aug-07	23-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07
SAMPLE DEPTH (ft.)	Stockpile	Stockpile	-	-	-	-	- 1	-	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
LAB SAMPLE 1D	-	_																				
Volatile Organic Compounds (ug/kg)																						
Tetrachloroethene	ND(1.0)	ND(1.0)	ND(4.6)	ND(4.8)	ND(4.8)	ND(4.6)	ND(4.8)	ND(5.0)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.2)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	1.2	ND(1.1)
Trichloroethene	ND(1.0)	ND(1.0)	ND(4.6)	ND(4.8)	ND(4.8)	ND(4.6)	ND(4.8)	ND(5.0)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.2)	4.0	ND(1.1)	2.4	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	6.5	ND(1.1)
cis-1,2-Dichloroethene	ND(1.0)	ND(1.0)	ND(4.6)	ND(4.8)	ND(4.8)	ND(4.6)	ND(4.8)	ND(5.0)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.2)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.0)	ND(1.1)
trans-1,2-Dichloroethene			1													1					1	1
Toluene	ND(1.5)	ND(1.6)						1								1		Î	1		1	1
Acetone	ND(10)	ND(10)	1		1	1		1	16	14	ND(11)	ND(12)	ND(11)	ND(11)	19	52	81	ND	ND	ND	ND(10)	ND
p-Isopropyltoluene						1			NA	NA	ND(11)	ND(12)	ND(11)	1		1	1	1	1	1	1	1
Chlorobenzene		1							2.7	7.3	12	ND(1.2)	2.6	3,6	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.0)	ND(1.1)
1.4-Dichlorobenzene	1	Î				1			ND(5.6)	ND(5.6)	7.8	ND(5.8)	ND(5.4)	ND(5.3)	ND(5.3)	ND(5.6)	ND(5.5)	ND(5.6)	ND(5.6)	ND(5.6)	ND(5.2)	ND(5.6)
C19-C36 Aliphatics C11-C22 Aromatics, Adjusted																						
C9-C18 Aliphatics														ļ		ļ						
Polychlorinated Biphenyls by MCP 8082 (mg/kg)			ALL ND		1	1					<u> </u>		L	l								
Total Metals by MCP 6000/7000 series (mg/kg)																						
Arsenic, Total		1	6.4	6.3	5.5	5.4	6.0	5,8	I	r	1	T	T	r	T	T	1	1	1	I	T	1
Barium, Total		<u> </u>	0.1	0,5	5.5			5,0		1	1	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> · · · · · · · · · · · · · · · · · · ·</u>			<u> </u>			+	<u> </u>
Chromium, Total			10	9.5	8.1	8.6	9.1	11				<u> </u>	<u> </u>		1						+	+
Lead, Total		·	7.4	4.0	3.1	3.4	6.5	4.7		+	<u> </u>	<u> </u>	<u> </u>								+	
			1	1.0		1			1			1						1				
Notes:																						
ND(1): Not detected. (0.5 RDL)																						
NA: Not applicable																						
Table limited to detected contaminants																						
Samples collected by Haley & Aldrich, Inc. and ERM																						
Blank - Not Tested																						
DIMIK - NUL I CSICU																						

-

CITAR

0.0014

DIANK - NOT LESTED

430 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS RTN 3-13302 VERTEX PROJECT No. 19163

SAMPLE DESIGNATION	STEP1	STEP2	STEP3	STEP4	S1	S4	S6	S7	S8	S10	S11	S12	S15	S16	SE1	SE2
AMPLING DATE	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	31-Jul-08	31-Jul-08	31-Jul-08	31-Jul-08	1-Aug-08	1-Aug-08	30-Jul-08	31-Jul-08	30-Jul-08	1-Aug-08	1-Aug-08	1-Aug-08
SAMPLE DEPTH (ft.)	Bottom	Bottom	Bottom	Bottom	0-6	0-6	0-6	0-6	0-6	0-6	0-6	0-6	0-6	0-6	0-6	0-6
LAB SAMPLE ID					L0811374-04	L0811374-05	L0811374-06	L0811374-07	L0811374-01	L0811375-02	L0811374-02	L0811374-03	L0811374-01	L0811375-03	L0811375-04	L0811375-0
olatile Organic Compounds (ug/kg)																
Tetrachloroethene	120	82	24	ND(1.1)												
richloroethene	240	150	32	4.5												
is-1,2-Dichloroethene	100	10	ND(1.0)	ND(1.1)						Ι						
rans-1,2-Dichloroethene		1														
Toluene		1	1													
Acetone	ND(11)	48	ND(10)	ND(11)												
-lsopropyltoluene																
hlorobenzene	ND(1.1)	ND(1.2)	ND(1.0)	ND(1.1)						T		1				
.4-Dichlorobenzene	ND(5.6)	ND(5.9)	ND(5.0)	ND(5.6)						1		1				1
										-					-	
Extractable Petroleum Hydrocarbons (mg/kg)																
C19-C36 Aliphatics					ND(3.435)	ND(3.47)	ND(3.545)	ND(3.47)	ND(3.79)	ND(3.705)	ND(6.85)	ND(3.4)	ND(3.4)	32.5	ND(3.92)	ND(4.015)
C11-C22 Aromatics, Adjusted			1		11.4	ND(3.47)	ND(3.545)	8.56	8,44	8.75	23.4	10.6	12.8	32.3	10	ND(4.015)
C9-C18 Aliphatics			1		ND(3.435)	ND(3.47)	ND(3.545)	ND(3.47)	ND(3.79)	ND(3.705)	ND(6.85)	ND(3.4)	ND(3.4)	ND(3.4)	ND(3.92)	ND(4.015)
Polychlorinated Biphenyls by MCP 8082 (mg/kg)					ALL ND											
Total Metals by MCP 6000/7000 series (mg/kg)																
Arsenic, Total					4.8	4.4	3.9	6.6	5.3	6.4	4.9	4.3	3.3	5.5	5.8	6.4
Barium, Total					22	18	33	50	32	30	22	17	36	26	20	32
Chromium, Total					19	7	15	14	11	14	8.3	6	13	11	7.3	12
Lead, Total		1			3.6	3.1	5.4	6.2	11	9.1	4.4	ND(1.25)	4.6	4.5	ND(1.35)	3.9

ND(1): Not detected. (0.5 RDL) NA: Not applicable Table limited to detected contaminants Samples collected by Haley & Aldrich, Inc. and ERM Blank - Not Tested

TABLE 4 - SUMMARY OF GROUNDWATER ANALYSES

430 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS RTN 3-13302 VERTEX PROJECT No. 19163

WELL DESIGNATION SAMPLING DATE SAMPLE COLLECTED BY	Method 1 GW 1 Standard	Method 1 GW 2 Standard	Method 1 GW- 3 Standard	MW-1 24-Oct-95 ERM	MW-1 27-May-98 ERM	MW-1 18-Feb-02 ERM	MW-40 5-Oct-10 ERM	MW-40S 5-Oct-10 ERM	MW-43S 6-Oct-10 ERM	MW-47M 6-Oct-10 ERM	MW-118 6-Oct-10 ERM	MW-201M 6-Oct-10 ERM	MW-202M 6-Oct-10 ERM	MW-403 6-Oct-10 ERM	MW-404 6-Oct-10 ERM	DEP-19M 7-Apr-11 ERM	DEP-21 7-Apr-11 ERM	MW-263M 7-Apr-11 ERM	MW-264M 7-Apr-11 ERM	MW-264M(DUP) 7-Apr-11 ERM	MW-266Ma 7-Apr-11 ERM	MW-267M 7-Apr-11 ERM	MW-267S 7-Apr-11 ERM	MW-267S(DUP 7-Apr-11 ERM	MW-268D 7-Apr-11 ERM	MW-269Ma 7-Apr-11 ERM	MW-554D 7-Apr-11 ERM	MW-555D 7-Apr-11 ERM
Chloroform	70	50	20,000	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	1.2	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	5	50	30,000	ND	ND	ND	ND	ND	ND	5.4	ND	ND	ND	1.4	ND	ND	ND	ND	7	7.2	ND	15	11	13	ND	ND	ND	ND
Trichloroethene	5	30	5,000	ND	ND	ND	3.9	4.5	7.3	15	25	56	32	30	13	ND	2.1	ND	37	37	6	240	510	450	8.4	ND	ND	ND
cis-1,2-Dichloroethene	70	100	50,000	ND	ND	ND	ND	ND	ND	ND	ND	48	ND	1.6	ND	2.7	14	ND	28	28	2.3	320	97	85	9.8	2.1	ND	1.3
1,1,1-Trichloroethane	200	4,000	20,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethene	7	80	30,000	ND	ND	ND	ND	ND	ND	ND	ND	4.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND
1,1-Dichloroethane	70	1,000	20,000	ND	ND	ND	ND	ND	ND	ND	ND	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	1.3	1.3	ND	1.2	ND	ND
Vinyl Chloride	2	2	50,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	17	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds (VOC)	NS	NS	NS	ALL ND	ALL ND	ALL ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dioxane	3	6,000	50,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.45	NA	1.89
Semi Volatile Organic Compounds (SVOC)		VARIOUS		ALL ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Polychlorinated Biphenyls (PCB)		VARIOUS		ALL ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Organchlorine Pesticides		VARIOUS		ALL ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Metals	VARIOUS	NS	VARIOUS	ALL ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes: ND: Not detected. NA: Not analyzed NS: No Standard

TABLE 5 - SUMMARY OF INDOOR AIR CONTAMINANTS OF CONCERN AND HUMAN HEALTH RISK
QUOTIENTS

400 BOSTON POST ROAD, WAYLAND, MASSACHUSETTS MADEP RTN 3-13302 VERTEX PROJECT No. 19163

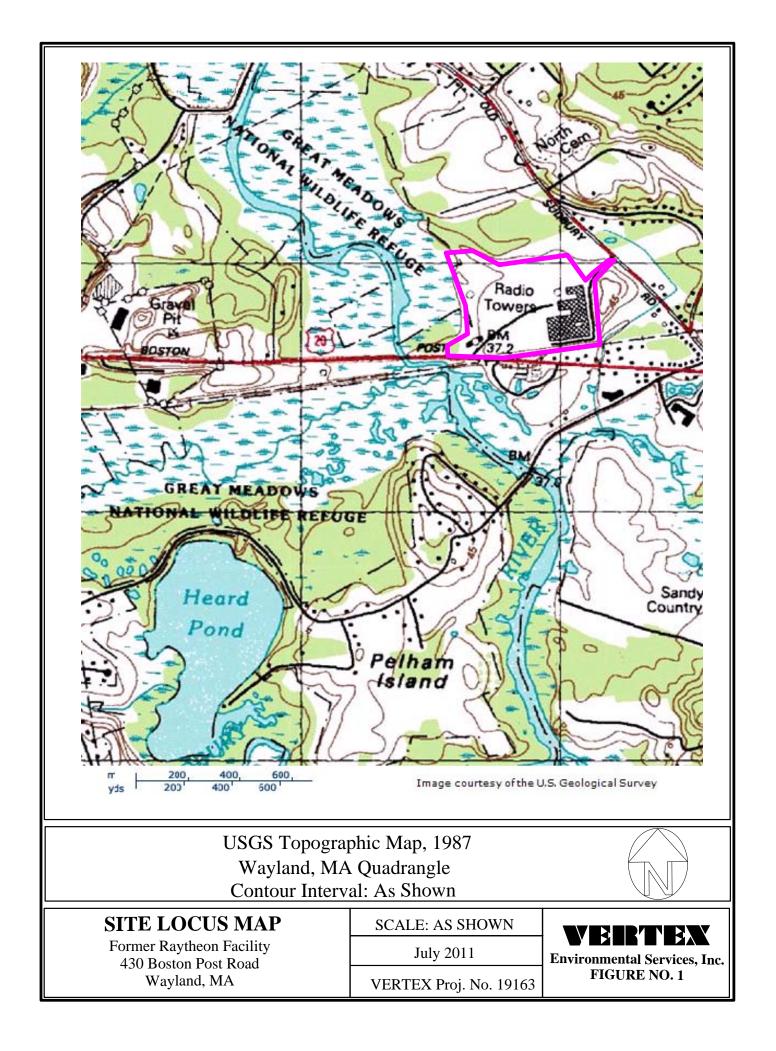
			ESTIMATED		
DETECTED			INDOOR AIR	ESTIMATED	
CONTAMINANT IN SOIL	CAS	SOIL GAS EPC	CONCENTRATION	ELCR	ESTIMATED HI
GAS	NUMBER	$(\mu g/m^3)$	$(\mu g/m^3)$	QUOTIENT	QUOTIENT
1,1,1-Trichloroethane	71-55-6	2.5E+01	1.03E-01	0.00E+00	4.70E-05
1,2,4-Trichlorobenzene	120-82-1	7.4E+00	2.45E-02	0.00E+00	1.22E-04
1,2,4-Trimethylbenzene	95-63-6	5.1E+00	2.02E-02	0.00E+00	3.40E-03
1,3,5-Trimethylbenzene	108-67-8	1.9E+00	7.42E-03	0.00E+00	1.25E-03
1,4-Dichlorobenzene	106-46-7	2.0E+00	8.18E-03	0.00E+00	1.02E-05
2-Dichlorobenzene	78-93-3	2.6E+02	3.50E-04	1.46E-07	2.36E-03
2-Hexanone	591-78-6	6.7E+01	1.06E+00	0.00E+00	1.06E-03
4-Ethyltoluene	622-96-8	1.5E+00	2.87E-06	0.00E+00	3.25E-04
Acetone	67-64-1	1.9E+03	8.13E+00	0.00E+00	2.32E-02
Benzene	71-43-2	1.2E+01	4.84E-02	1.55E-07	1.20E-09
Carbon disulfide	75-15-0	1.5E+01	6.63E-02	0.00E+00	9.47E-05
Chloroethane	75-00-3	7.3E-01	3.38E-03	1.15E-09	3.38E-07
Chloroform	67-66-3	9.6E+00	4.14E-02	3.91E-07	6.00E-05
Chloromethane	74-87-3	1.8E+00	7.83E-03	3.22E-09	8.70E-05
Cyclohexane	110-82-7	1.7E+00	8.90E-07	0.00E+00	7.25E-05
Dichlorodifluoromethane	75-71-8	1.4E+01	5.75E-02	0.00E+00	2.88E-04
Ethanol	64-17-5	1.5E+02	5.13E-05	0.00E+00	8.21E-05
Ethylbenzene	100-41-4	4.4E+00	1.81E-02	8.19E-09	1.81E-05
Freon 113	76-13-1	1.9E+00	1.35E-06	0.00E+00	6.32E-03
Isopropanol	67-63-0	6.5E+01	2.74E-01	0.00E+00	2.61E-04
Methylene chloride	75-09-2	1.7E+01	7.50E-02	1.44E-08	2.48E-05
4-Methyl-2-pentanone	108-10-1	9.9E+00	4.06E-02	0.00E+00	5.08E-04
m/p-Xylene	108-38-3	1.1E+01	4.46E-02	0.00E+00	6.38E-06
o-Xylene	95-47-6	4.9E+00	2.05E-02	0.00E+00	2.96E-06
Heptane	142-82-5	1.2E+01	6.32E-05	0.00E+00	4.98E-06
n-Hexane	110-54-3	1.3E+01	6.09E-02	0.00E+00	3.05E-04
Propylene	115-07-1	4.9E+01	1.95E-01	0.00E+00	1.39E-03
Styrene	100-42-5	1.7E+00	6.71E-03	0.00E+00	6.71E-06
Tetrachloroethylene	127-18-4	1.1E+02	4.36E-01	5.38E-07	9.80E-05
Tetrahydrofuran	109-99-9	2.5E+00	8.97E-03	0.00E+00	3.25E-02
Toluene	108-88-3	1.9E+01	7.98E-02	0.00E+00	2.00E-04
Trichloroethylene	79-01-6	9.9E+01	4.12E-02	1.86E-06	1.03E-03
Trichloroflouromethane	75-69-4	8.5E+02	3.56E+00	0.00E+00	5.09E-03
Vinyl acetate	108-05-4	4.8E+01	2.00E-01	0.00E+00	9.99E-04
Notes:			Cumulative risk	3.12E-06	8.12E-02

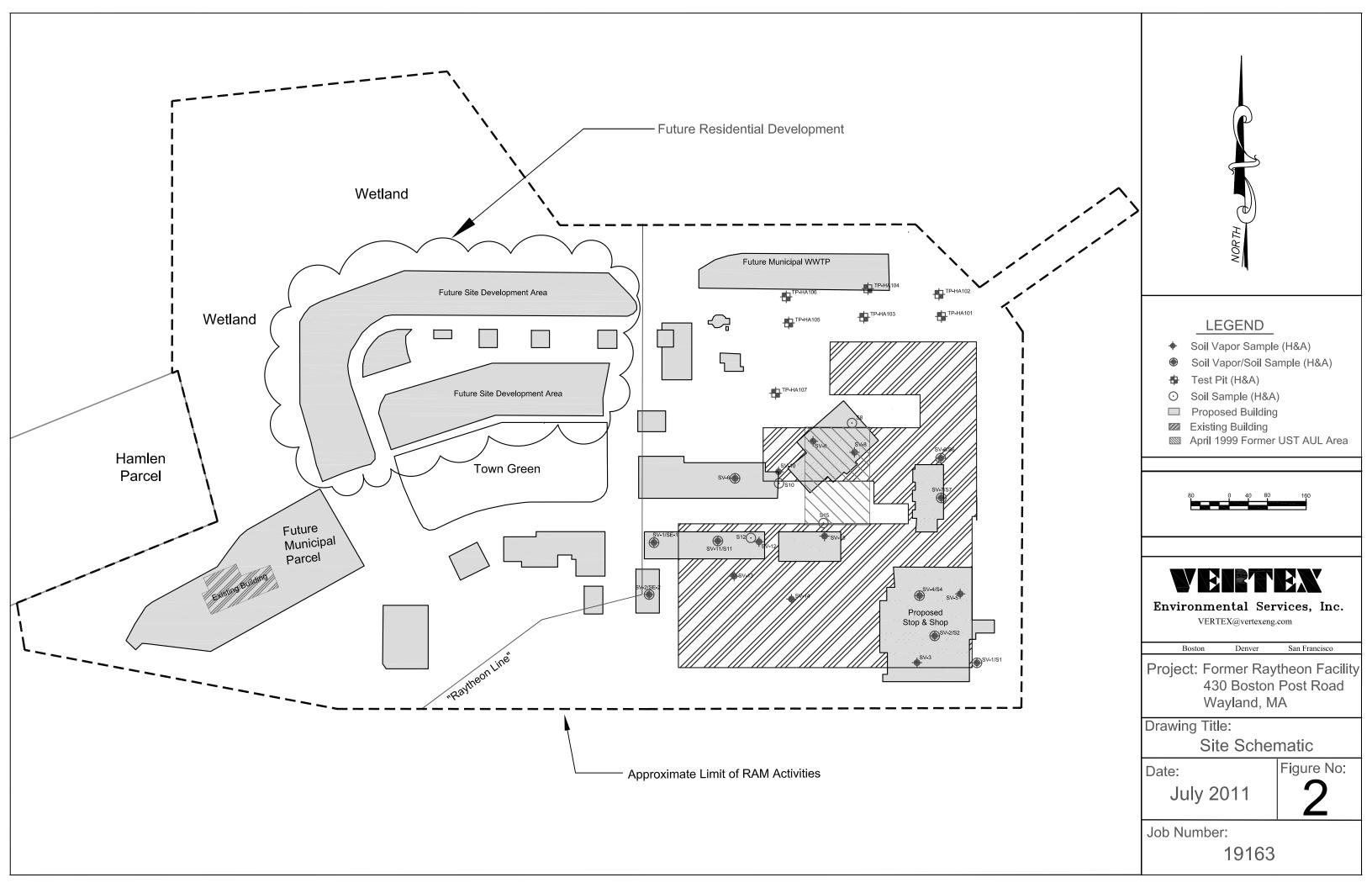
1. The soil vapor Exposure Point Concentration (EPC) is the maximum detected level.

2. Estimated indoor air concentrations via US EPA air simulation model - 2006

3. ELCR - Excess Lifetime Cancer Risk Limit = 1E-05

4. HI - Hazard Index for non-cancer risk limit = 1E+01


DRAFT


FIGURES

Ð

DRAFT

APPENDIX A LABORATORY ANALYTICAL REPORTS

(

ANALYTICAL REPORT

	100//075
Lab Number:	L0811375
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN:	Kate Leblanc
Project Name:	WAYLAND TOWN CENTER
Project Number:	12069-054
Report Date:	08/07/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WAYLAND TOWN CENTER	Lab Number:	L0811375
Project Number:	12069-054	Report Date:	08/07/08

Alpha Sample ID	Client ID	Sample Location
L0811375-01	S8	WAYLAND, MA
L0811375-02	S10	WAYLAND, MA
L0811375-03	S16	WAYLAND, MA
L0811375-04	SE1	WAYLAND, MA
L0811375-05	SE2	WAYLAND, MA

 Lab Number:
 L0811375

 Report Date:
 08/07/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status	
А	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	YES
A res	sponse to questions E and F is required for "Presumptive Certainty" status	
Е	Were all QC performance standards and recommendations for the specified method(s) achieved?	NO
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WAYLAND TOWN CENTERProject Number:12069-054

 Lab Number:
 L0811375

 Report Date:
 08/07/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

MCP Related Narratives

EPH

L0811375-03 has elevated detection limits due to the dilution required by matrix interferences encountered during the concentration of the sample.

РСВ

In reference to question E:

L0811375-01: The Continuing Calibration criteria was not met for the confirmatory column; however, the sample was non-detect for the target analytes. Therefore, no further actions were taken.

Metals

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kini l. Witter

Title: Technical Director/Representative

Date: 08/07/08

08070817:11

ORGANICS

08070817:11

PETROLEUM HYDROCARBONS

						08070817:11
Project Name:	WAYLAND TOWN C	ENTER			Lab Number:	L0811375
Project Number:	12069-054				Report Date:	08/07/08
-		SAMPLE	RESULTS		-	
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L0811375-01 S8 WAYLAND, MA Soil 61,EPH-04-1 08/05/08 19:59 MF 88%				Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date:	08/01/08 08: 08/01/08 Not Specified EPA 3546 08/02/08 09:
		Quality Contro	ol Information			
Condition of sample receiv					Satisfactor	-
Sample Temperature upon Sample Extraction method					Received	on Ice Per the Method
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Extractable Petrol	eum Hydrocarbons					
C9-C18 Aliphatics		ND		mg/kg	7.58	1
C19-C36 Aliphatics		ND		mg/kg	7.58	1
C11-C22 Aromatics		8.44		mg/kg	7.58	1
C11-C22 Aromatics, Adjust	sted	8.44		mg/kg	7.58	1
Naphthalene		ND		mg/kg	0.379	1
2-Methylnaphthalene		ND		mg/kg	0.379	1
Acenaphthylene		ND		mg/kg	0.379	1
Acenaphthene		ND		ma/ka	0.379	1

			0.0.0	•
2-Methylnaphthalene	ND	mg/kg	0.379	1
Acenaphthylene	ND	mg/kg	0.379	1
Acenaphthene	ND	mg/kg	0.379	1
Fluorene	ND	mg/kg	0.379	1
Phenanthrene	ND	mg/kg	0.379	1
Anthracene	ND	mg/kg	0.379	1
Fluoranthene	ND	mg/kg	0.379	1
Pyrene	ND	mg/kg	0.379	1
Benzo(a)anthracene	ND	mg/kg	0.379	1
Chrysene	ND	mg/kg	0.379	1
Benzo(b)fluoranthene	ND	mg/kg	0.379	1
Benzo(k)fluoranthene	ND	mg/kg	0.379	1
Benzo(a)pyrene	ND	mg/kg	0.379	1
Indeno(1,2,3-cd)Pyrene	ND	mg/kg	0.379	1
Dibenzo(a,h)anthracene	ND	mg/kg	0.379	1
Benzo(ghi)perylene	ND	mg/kg	0.379	1

Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Client ID:	S8				Date Received:	
Lab ID:	L0811375-01				Date Collected:	08/01/08 08:1
		SAMPLE	RESULTS			
Project Number:	12069-054				Report Date:	08/07/08
Project Name:	WAYLAND TOWN CENTE	R			Lab Number:	L0811375
						08070817:11

Surrogate	% Recovery	Acceptance Qualifier Criteria
Chloro-Octadecane	47	40-140
o-Terphenyl	69	40-140
2-Fluorobiphenyl	88	40-140
2-Bromonaphthalene	86	40-140

Project Name:	WAYLAND TOWN C	ENTER			Lab Number:	L0811375	
Project Number:	12069-054				Report Date:	08/07/08	
-		SAMPLE I	RESULTS		-		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L0811375-02 S10 WAYLAND, MA Soil 61,EPH-04-1 08/05/08 21:37 MF 90%				Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date:	08/01/08 08/01/08 Not Speci EPA 3546 08/02/08	fied S
		Quality Contro	Information				
Condition of sample receiv	ved.		i intormation		Satisfactor	V	
Sample Temperature upon receipt:					Received o	-	
Sample Extraction method:					Extracted F	Per the Method	
_							
Parameter		Result	Qualifier	Units	RDL [Dilution Factor	
	eum Hydrocarbons	Result	Qualifier	Units	RDL [Dilution Factor	
	eum Hydrocarbons	Result	Qualifier	Units mg/kg	RDL 1 7.41	Dilution Factor	
Extractable Petrol	eum Hydrocarbons		Qualifier				
Extractable Petrol	eum Hydrocarbons	ND	Qualifier	mg/kg	7.41	1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics		ND ND	Qualifier	mg/kg mg/kg	7.41 7.41	1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics		ND ND 8.75	Qualifier	mg/kg mg/kg mg/kg	7.41 7.41 7.41	1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjust		ND ND 8.75 8.75	Qualifier	mg/kg mg/kg mg/kg mg/kg	7.41 7.41 7.41 7.41 7.41	1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene		ND ND 8.75 8.75 ND	Qualifier	mg/kg mg/kg mg/kg mg/kg	7.41 7.41 7.41 7.41 0.370	1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene		ND ND 8.75 8.75 8.75 ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg	7.41 7.41 7.41 7.41 0.370 0.370	1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene		ND ND 8.75 8.75 ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	7.41 7.41 7.41 7.41 0.370 0.370 0.370 0.370	1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene		ND ND 8.75 8.75 ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	7.41 7.41 7.41 7.41 0.370 0.370 0.370 0.370 0.370	1 1 1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene		ND ND 8.75 8.75 ND ND ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	7.41 7.41 7.41 7.41 0.370 0.370 0.370 0.370 0.370 0.370	1 1 1 1 1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene		ND ND 8.75 8.75 ND ND ND ND ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	7.41 7.41 7.41 7.41 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370	1 1 1 1 1 1 1 1 1 1 1 1 1	

ND

ND

ND

ND

ND

ND

ND

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.370

0.370

0.370

0.370

0.370

0.370

0.370

0.370

1

1

1

1

1

1

1

1

08070817:11

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene

Chrysene

Parameter	eum Hydrocarbons	Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Client ID:	S10				Date Received:	08/01/08
Lab ID:	L0811375-02				Date Collected:	08/01/08 09:00
		SAMPLE	RESULTS			
Project Number:	12069-054				Report Date:	08/07/08
Project Name:	WAYLAND TOWN CENT	TER			Lab Number:	L0811375
						08070817:11

		Acceptance Criteria
Surrogate	% Recovery	Qualifier
Chloro-Octadecane	47	40-140
o-Terphenyl	73	40-140
2-Fluorobiphenyl	84	40-140
2-Bromonaphthalene	84	40-140

Project Name:	WAYLAND TOWN C	ENTER			Lab Number:	L0811375	
Project Number:	12069-054				Report Date:	08/07/08	
		SAMPLE	RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L0811375-03 S16 WAYLAND, MA Soil 61,EPH-04-1 08/06/08 18:19 MF 94%				Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date:	08/01/08 09 08/01/08 Not Specifi EPA 3546 08/02/08 09	ed
		Quality Contro	I Information				
Condition of sample recei	ved:				Satisfacto	ry	
Sample Temperature upon receipt:					Received	on Ice	
Cample Temperature upo	1						
Sample Extraction method					Extracted	Per the Method	
					Extracted	Per the Method	
					Extracted	Per the Method	
		Result	Qualifier	Units	Extracted RDL	Per the Method Dilution Factor	
Sample Extraction method Parameter		Result	Qualifier	Units			
Sample Extraction method Parameter	d:	Result	Qualifier	Units mg/kg			
Sample Extraction method Parameter Extractable Petrol	d:		Qualifier		RDL	Dilution Factor	
Sample Extraction method Parameter Extractable Petrol C9-C18 Aliphatics	d:	ND	Qualifier	mg/kg	RDL 14.2	Dilution Factor	
Sample Extraction method Parameter Extractable Petrol C9-C18 Aliphatics C19-C36 Aliphatics	eum Hydrocarbons	ND 32.5	Qualifier	mg/kg mg/kg	RDL 14.2 14.2	Dilution Factor	
Sample Extraction method Parameter Extractable Petrol C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	eum Hydrocarbons	ND 32.5 32.3	Qualifier	mg/kg mg/kg mg/kg	RDL 14.2 14.2 14.2	Dilution Factor	
Sample Extraction method Parameter Extractable Petrol C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adju	eum Hydrocarbons	ND 32.5 32.3 32.3	Qualifier	mg/kg mg/kg mg/kg mg/kg	RDL 14.2 14.2 14.2 14.2 14.2	Dilution Factor	
Sample Extraction method Parameter Extractable Petrol C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adju Naphthalene	eum Hydrocarbons	ND 32.5 32.3 32.3 ND	Qualifier	mg/kg mg/kg mg/kg mg/kg	RDL 14.2 14.2 14.2 14.2 14.2 0.709	Dilution Factor	
Sample Extraction method Parameter Extractable Petrol C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adju Naphthalene 2-Methylnaphthalene	eum Hydrocarbons	ND 32.5 32.3 32.3 ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg	RDL 14.2 14.2 14.2 14.2 14.2 0.709 0.709	Dilution Factor	
Sample Extraction method Parameter Extractable Petrol C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adju Naphthalene 2-Methylnaphthalene Acenaphthylene	eum Hydrocarbons	ND 32.5 32.3 32.3 ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RDL 14.2 14.2 14.2 14.2 0.709 0.709 0.709	Dilution Factor	
Sample Extraction method Parameter Extractable Petrol C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adju Naphthalene 2-MethyInaphthalene Acenaphthylene	eum Hydrocarbons	ND 32.5 32.3 32.3 ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RDL 14.2 14.2 14.2 14.2 0.709 0.709 0.709 0.709 0.709	Dilution Factor	
Sample Extraction method Parameter Extractable Petrol C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adju Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	eum Hydrocarbons	ND 32.5 32.3 32.3 ND ND ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RDL 14.2 14.2 14.2 14.2 0.709 0.709 0.709 0.709 0.709 0.709	Dilution Factor	

ND

ND

ND

ND

ND

ND

ND

ND

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.709

0.709

0.709

0.709

0.709

0.709

0.709

0.709

0.709

2

2

2

2

2

2

2

2

2

08070817:11

Pyrene

Chrysene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene

Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Client ID:	S16				Date Received:	08/01/08
Lab ID:	L0811375-03				Date Collected:	08/01/08 09:50
		SAMPLE	RESULTS			
Project Number:	12069-054				Report Date:	08/07/08
Project Name:	WAYLAND TOWN CENTE	R			Lab Number:	L0811375
						08070817:11

0	04 D	Acceptance Criteria
Surrogate	% Recovery	Qualifier Criteria
Chloro-Octadecane	58	40-140
o-Terphenyl	72	40-140
2-Fluorobiphenyl	72	40-140
2-Bromonaphthalene	73	40-140

Project Name:	WAYLAND TOWN C	ENTER			Lab Number:	L0811375
Project Number:	12069-054				Report Date:	08/07/08
		SAMPLE	RESULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L0811375-04 SE1 WAYLAND, MA Soil 61,EPH-04-1 08/06/08 17:51 MF 85%				Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date	08/01/08 Not Specified EPA 3546
		Quality Contro	ol Information			
Condition of sample receiv Sample Temperature upon Sample Extraction method	n receipt:				Satisfacto Received Extracted	-
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Extractable Petrol	eum Hydrocarbons					
C9-C18 Aliphatics		ND		mg/kg	7.84	1
C19-C36 Aliphatics		ND		mg/kg	7.84	1
C11-C22 Aromatics		10.0		mg/kg	7.84	1
C11-C22 Aromatics, Adjust	sted	10.0		mg/kg	7.84	1
Naphthalene		ND		mg/kg	0.392	1
2-Methylnaphthalene		ND		mg/kg	0.392	1
Acenaphthylene		ND		mg/kg	0.392	1
Acenaphthene		ND		mg/kg	0.392	1
Fluorene		ND		mg/kg	0.392	1
Phenanthrene		ND		mg/kg	0.392	1
Anthracene		ND		mg/kg	0.392	1
Fluoranthene		ND		mg/kg	0.392	1
Pyrene		ND		mg/kg	0.392	1
Benzo(a)anthracene		ND		mg/kg	0.392	1

ND

ND

ND

ND

ND

ND

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.392

0.392

0.392

0.392

0.392

0.392

0.392

1

1

1

1

1

1

1

08070817:11

Chrysene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene

Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Client ID:	SE1				Date Received:	08/01/08
Lab ID:	L0811375-04				Date Collected:	08/01/08 10:40
		SAMPLE	RESULTS			
Project Number:	12069-054				Report Date:	08/07/08
Project Name:	WAYLAND TOWN CEN	NTER			Lab Number:	L0811375
						08070817:11

_		Acceptance Criteria
Surrogate	% Recovery	Qualifier Criteria
Chloro-Octadecane	53	40-140
o-Terphenyl	62	40-140
2-Fluorobiphenyl	70	40-140
2-Bromonaphthalene	68	40-140

Project Name:	WAYLAND TOWN C	ENTER			Lab Number:	L0811375	
Project Number:	12069-054				Report Date:	08/07/08	
		SAMPLE	RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L0811375-05 SE2 WAYLAND, MA Soil 61,EPH-04-1 08/05/08 21:05 MF 83%				Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date:	08/01/08 08/01/08 Not Speci EPA 3546 08/02/08 (fied S
		Quality Contro	ol Information				
Condition of sample received	ved:	•			Satisfactor	у	
Sample Temperature upor	n receipt:				Received of	on Ice	
Sample Extraction method	d:				Extracted F	Per the Method	
Parameter		Result	Qualifier	Units	RDL I	Dilution Factor	
	eum Hydrocarbons	Result	Qualifier	Units	RDL I	Dilution Factor	
	eum Hydrocarbons	Result	Qualifier		RDL 1	Dilution Factor	
Extractable Petrol	eum Hydrocarbons		Qualifier	Units mg/kg mg/kg			
Extractable Petrol	eum Hydrocarbons	ND	Qualifier	mg/kg	8.03	1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics		ND ND	Qualifier	mg/kg mg/kg	8.03 8.03	1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics		ND ND ND	Qualifier	mg/kg mg/kg mg/kg	8.03 8.03 8.03	1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjust		ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 8.03	1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene		ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 8.03 0.402	1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene		ND ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 0.402 0.402	1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene		ND ND ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 0.402 0.402 0.402	1 1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene		ND ND ND ND ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 0.402 0.402 0.402 0.402 0.402	1 1 1 1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene		ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 0.402 0.402 0.402 0.402 0.402 0.402 0.402	1 1 1 1 1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8.03 8.03 8.03 8.03 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

ND

ND

ND

1

1

1

1

0.402

0.402

0.402

0.402

mg/kg

mg/kg

mg/kg

mg/kg

08070817:11

Benzo(a)pyrene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Client ID:	SE2				Date Received:	
Lab ID:	L0811375-05				Date Collected:	08/01/08 11:2
		SAMPLE	RESULTS			
Project Number:	12069-054				Report Date:	08/07/08
Project Name:	WAYLAND TOWN CENTE	R			Lab Number:	L0811375
						08070817:11

Surrogate	% Recovery	Acceptance Qualifier Criteria
Chloro-Octadecane	45	40-140
o-Terphenyl	71	40-140
2-Fluorobiphenyl	80	40-140
2-Bromonaphthalene	80	40-140

Project Name:	WAYLAND TOWN CENTER	
Project Name:	WAYLAND TOWN CENTER	

Project Number: 12069-054

 Lab Number:
 L0811375

 Report Date:
 08/07/08

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

61,EPH-04-1 08/05/08 15:01 MF Extraction Method: EPA 3546 Extraction Date: 08/02/08 09:30

Parameter	Result	Qua	alifier	Units	RDL
Extractable Petroleum Hydrocarl	oons for sampl	e(s):	01-05	Batch:	WG331278-1
C9-C18 Aliphatics	ND			mg/kg	6.67
C19-C36 Aliphatics	ND			mg/kg	6.67
C11-C22 Aromatics	ND			mg/kg	6.67
C11-C22 Aromatics, Adjusted	ND			mg/kg	6.67
Naphthalene	ND			mg/kg	0.333
2-Methylnaphthalene	ND			mg/kg	0.333
Acenaphthylene	ND			mg/kg	0.333
Acenaphthene	ND			mg/kg	0.333
Fluorene	ND			mg/kg	0.333
Phenanthrene	ND			mg/kg	0.333
Anthracene	ND			mg/kg	0.333
Fluoranthene	ND			mg/kg	0.333
Pyrene	ND			mg/kg	0.333
Benzo(a)anthracene	ND			mg/kg	0.333
Chrysene	ND			mg/kg	0.333
Benzo(b)fluoranthene	ND			mg/kg	0.333
Benzo(k)fluoranthene	ND			mg/kg	0.333
Benzo(a)pyrene	ND			mg/kg	0.333
Indeno(1,2,3-cd)Pyrene	ND			mg/kg	0.333
Dibenzo(a,h)anthracene	ND			mg/kg	0.333
Benzo(ghi)perylene	ND			mg/kg	0.333

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	58		40-140	
o-Terphenyl	65		40-140	
2-Fluorobiphenyl	80		40-140	
2-Bromonaphthalene	80		40-140	

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054 Lab Number: L0811375 Report Date: 08/07/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Extractable Petroleum Hydrocarbons	Associated sample(s): 01-05	Batch: WG331278-	-2 WG331278-3		
C9-C18 Aliphatics	51	54	40-140	6	25
C19-C36 Aliphatics	60	62	40-140	3	25
C11-C22 Aromatics	80	80	40-140	0	25
Naphthalene	64	64	40-140	0	25
2-Methylnaphthalene	64	63	40-140	2	25
Acenaphthylene	64	64	40-140	0	25
Acenaphthene	68	68	40-140	0	25
Fluorene	74	73	40-140	1	25
Phenanthrene	80	78	40-140	3	25
Anthracene	78	76	40-140	3	25
Fluoranthene	86	85	40-140	1	25
Pyrene	86	85	40-140	1	25
Benzo(a)anthracene	86	86	40-140	0	25
Chrysene	87	87	40-140	0	25
Benzo(b)fluoranthene	84	84	40-140	0	25
Benzo(k)fluoranthene	87	87	40-140	0	25
Benzo(a)pyrene	77	77	40-140	0	25
Indeno(1,2,3-cd)Pyrene	79	79	40-140	0	25
Dibenzo(a,h)anthracene	82	82	40-140	0	25
Benzo(ghi)perylene	80	80	40-140	0	25
Nonane (C9)	39	44	30-140	12	25

08070817:11

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054 Lab Number: L0811375 Report Date: 08/07/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
stractable Petroleum Hydrocarbons	Associated sample(s): 01-05	Batch: WG331278-	2 WG331278-3		
Decane (C10)	46	51	40-140	10	25
Dodecane (C12)	54	56	40-140	4	25
Tetradecane (C14)	55	57	40-140	4	25
Hexadecane (C16)	58	60	40-140	3	25
Octadecane (C18)	59	60	40-140	2	25
Nonadecane (C19)	60	61	40-140	2	25
Eicosane (C20)	60	63	40-140	5	25
Docosane (C22)	62	64	40-140	3	25
Tetracosane (C24)	65	67	40-140	3	25
Hexacosane (C26)	62	63	40-140	2	25
Octacosane (C28)	62	63	40-140	2	25
Triacontane (C30)	60	62	40-140	3	25
Hexatriacontane (C36)	60	61	40-140	2	25
% Naphthalene Breakthrough	0	0		NC	
% 2-Methylnaphthalene Breakthrough	0	0		NC	

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054 Lab Number: L0811375 Report Date: 08/07/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Extractable Petroleum Hydrocarbons As	sociated sample(s): 01-0	5 Batch: WG331278-2	2 WG331278-3		

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
Chloro-Octadecane	52	56	40-140
o-Terphenyl	85	84	40-140
2-Fluorobiphenyl	83	84	40-140
2-Bromonaphthalene	85	86	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

 Lab Number:
 L0811375

 Report Date:
 08/07/08

Fractionation Check Standard Quality Control

Fractionation check standard for 200818205

arameter	% Recovery	QC Criteria
C9-C18 Aliphatics	77	40-140
C19-C36 Aliphatics	76	40-140
C11-C22 Aromatics	86	40-140
Naphthalene	82	40-140
2-Methylnaphthalene	78	40-140
Acenaphthylene	76	40-140
Acenaphthene	80	40-140
Fluorene	79	40-140
Phenanthrene	78	40-140
Anthracene	82	40-140
Fluoranthene	84	40-140
Pyrene	84	40-140
Benzo(a)anthracene	82	40-140
Chrysene	88	40-140
Benzo(b)fluoranthene	81	40-140
Benzo(k)fluoranthene	97	40-140
Benzo(a)pyrene	78	40-140
Indeno(1,2,3-cd)Pyrene	76	40-140
Dibenzo(a,h)anthracene	83	40-140
Benzo(g,h,i)perylene	82	40-140
Nonane	72	30-140
Decane	77	40-140
Dodecane	80	40-140
Tetradecane	76	40-140
Hexadecane	78	40-140
Octadecane	76	40-140
Nonadecane	75	40-140
Eicosane	77	40-140
Docosane	79	40-140
Tetracosane	83	40-140
Hexacosane	78	40-140
Octacosane	77	40-140
Triacontane	76	40-140
Hexatriacontane	75	40-140
% Naphthalene Breakthrough	0	40-140
% 2-Methylnaphthalene Breakthrough	0	40-140

 Lab Number:
 L0811375

 Report Date:
 08/07/08

Fractionation Check Standard Quality Control

Fractionation check standard for 200818205

Surrogate	% Recovery	QC Criteria	
Chloro-Octadecane	66	40-140	
o-Terphenyl	83	40-140	
2-Fluorobiphenyl	75	40-140	
2-Bromonaphthalene	76	40-140	

PCBS

Project Name: WAYLAND TOWN CENTER

-_----

08070817:11

 Lab Number:
 L0811375

 Report Date:
 08/07/08

Project Number: 12069-054

Lab ID:	L0811375-01	Date Collected:	08/01/08 08:15
Client ID:	S8	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/05/08 23:10	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	88%		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Polychlorinated Biphenyls by MCP 8082					
Aroclor 1016	ND		ua/ka	37.9	1
			ug/kg		
Aroclor 1221	ND		ug/kg	37.9	1
Aroclor 1232	ND		ug/kg	37.9	1
Aroclor 1242	ND		ug/kg	37.9	1
Aroclor 1248	ND		ug/kg	37.9	1
Aroclor 1254	ND		ug/kg	37.9	1
Aroclor 1260	ND		ug/kg	37.9	1
Aroclor 1262	ND		ug/kg	37.9	1
Aroclor 1268	ND		ug/kg	37.9	1

Sumanata		Qualifier	Acceptance Criteria	Column
Surrogate	% Recovery	Quaimer		Column
2,4,5,6-Tetrachloro-m-xylene	53		30-150	А
Decachlorobiphenyl	53		30-150	А
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	72		30-150	В

Project Name: WAYLAND TOWN CENTER

L0811375-02

WAYLAND, MA

08/05/08 23:37

S10

Soil

JB

90%

64,8082

Project Number: 12069-054

Lab ID:

Matrix:

Analyst:

Client ID:

Sample Location:

Analytical Method:

Analytical Date:

Percent Solids:

08070817:11

Lab Number: L0811375 08/07/08

Report Date:

Date Collected:

Date Received:

Extraction Method:

Cleanup Method1:

Extraction Date:

Field Prep:

08/01/08 09:00 08/01/08 Not Specified EPA 3546 08/04/08 11:15 EPA 3665A

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Polychlorinated Biphenyls by Mo	CP 8082				
Aroclor 1016	ND		ug/kg	37.0	1
Aroclor 1221	ND		ug/kg	37.0	1
Aroclor 1232	ND		ug/kg	37.0	1
Aroclor 1242	ND		ug/kg	37.0	1
Aroclor 1248	ND		ug/kg	37.0	1
Aroclor 1254	ND		ug/kg	37.0	1
Aroclor 1260	ND		ug/kg	37.0	1
Aroclor 1262	ND		ug/kg	37.0	1
Aroclor 1268	ND		ug/kg	37.0	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	54	Quanter	30-150	A
Decachlorobiphenyl	59		30-150	A
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	72		30-150	В

Project Name: WAYLAND TOWN CENTER

L0811375-03

WAYLAND, MA

08/05/08 23:51

S16

Soil

JB

94%

64,8082

Project Number: 12069-054

Lab ID:

Matrix:

Analyst:

Client ID:

Sample Location:

Analytical Method:

Analytical Date:

Percent Solids:

08070817:11

Lab Number: L0811375 08/07/08

Report Date:

Date Collected:

Date Received:

Extraction Method:

Cleanup Method1:

Extraction Date:

Field Prep:

08/01/08 09:50 08/01/08 Not Specified EPA 3546 08/04/08 11:15 EPA 3665A

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Polychlorinated Biphenyls by MCP 8082					
Aroclor 1016	ND		ug/kg	35.5	1
Aroclor 1221	ND		ug/kg	35.5	1
Aroclor 1232	ND		ug/kg	35.5	1
Aroclor 1242	ND		ug/kg	35.5	1
Aroclor 1248	ND		ug/kg	35.5	1
Aroclor 1254	ND		ug/kg	35.5	1
Aroclor 1260	ND		ug/kg	35.5	1
Aroclor 1262	ND		ug/kg	35.5	1
Aroclor 1268	ND		ug/kg	35.5	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	А
Decachlorobiphenyl	52		30-150	А
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	74		30-150	В

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054 08070817:11

Lab Number: L0811375 08/07/08

Report Date:

Lab ID:	L0811375-04	Date Collected:	08/01/08 10:40
Client ID:	SE1	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/06/08 00:05	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	85%		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Polychlorinated Biphenyls by MCP 8082					
Associate 4040	ND			20.2	4
Aroclor 1016	ND		ug/kg	39.2	
Aroclor 1221	ND		ug/kg	39.2	1
Aroclor 1232	ND		ug/kg	39.2	1
Aroclor 1242	ND		ug/kg	39.2	1
Aroclor 1248	ND		ug/kg	39.2	1
Aroclor 1254	ND		ug/kg	39.2	1
Aroclor 1260	ND		ug/kg	39.2	1
Aroclor 1262	ND		ug/kg	39.2	1
Aroclor 1268	ND		ug/kg	39.2	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	56		30-150	A
Decachlorobiphenyl	48		30-150	А
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В
Decachlorobiphenyl	62		30-150	В

Project Name: WAYLAND TOWN CENTER

Lab Number: Report Date:

L0811375 08/07/08

08070817:11

Project Number: 12069-054

Lab ID:	L0811375-05	Date Collected:	08/01/08 11:25
Client ID:	SE2	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/06/08 00:19	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	83%		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Polychlorinated Biphenyls by MCP 8082					
Aroclor 1016	ND		ug/kg	40.2	1
Aroclor 1221	ND		ug/kg	40.2	1
Aroclor 1232	ND		ug/kg	40.2	1
Aroclor 1242	ND		ug/kg	40.2	1
Aroclor 1248	ND		ug/kg	40.2	1
Aroclor 1254	ND		ug/kg	40.2	1
Aroclor 1260	ND		ug/kg	40.2	1
Aroclor 1262	ND		ug/kg	40.2	1
Aroclor 1268	ND		ug/kg	40.2	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	53		30-150	А
Decachlorobiphenyl	49		30-150	А
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	65		30-150	В

Project Name:	WAYLAND TOWN CENTER	Lab Number:	L0811375
Project Number:	12069-054	Report Date:	08/07/08

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

64,8082 08/04/08 13:55 JB Extraction Method:EPA 3546Extraction Date:08/04/08 08:45Cleanup Method1:EPA 3665ACleanup Date1:08/04/08

olychlorinated Biphenyls by MCP 8082 for sample(s): 01-05 Batch: WG331341-1
Aroclor 1016 ND ug/kg 33.3
Aroclor 1221 ND ug/kg 33.3
Aroclor 1232 ND ug/kg 33.3
Aroclor 1242 ND ug/kg 33.3
Aroclor 1248 ND ug/kg 33.3
Aroclor 1254 ND ug/kg 33.3
Aroclor 1260 ND ug/kg 33.3
Aroclor 1262 ND ug/kg 33.3
Aroclor 1268 ND ug/kg 33.3

	Acceptance								
Surrogate	%Recovery	Qualifier	Criteria	Column					
	74		20.450	٨					
2,4,5,6-Tetrachloro-m-xylene	71		30-150	A					
Decachlorobiphenyl	78		30-150	А					
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В					
Decachlorobiphenyl	92		30-150	В					

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054

 Lab Number:
 L0811375

 Report Date:
 08/07/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Polychlorinated Biphenyls by MCP 808	82 Associated sample(s): 01-0	5 Batch: WG3313	341-2 WG331341-3		
Aroclor 1016	89	75	40-140	17	30
Aroclor 1260	83	74	40-140	11	30

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qualifier	%Recovery Qualifier	Criteria	Column
				_
2,4,5,6-Tetrachloro-m-xylene	72	65	30-150	A
Decachlorobiphenyl	84	77	30-150	А
2,4,5,6-Tetrachloro-m-xylene	76	69	30-150	В
Decachlorobiphenyl	90	80	30-150	В

METALS

									08070817:	11
Project Name:	WAYLA		CENTER				Lab Number:		L0811375	
Project Number:	12069-0	54					Report Date:		08/07/08	
			SA	MPLE	RESULT	S				
Lab ID: Client ID: Sample Location: Matrix:	L081137 S8 WAYLAN Soil						Date Collected Date Received Field Prep:	:	08/01/08 08: 08/01/08 Not Specifie	
Percent Solids:	88%				Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepare		Method	Method	Analyst
Total Metals by MC	CP 6000/70	00 series								
Arsenic, Total	5.3		mg/kg	0.54	1	08/04/08 1	2:00 08/05/08 11:5	2 EPA 3050	B 60,6010B	MG
Barium, Total	32		mg/kg	0.54	1	08/04/08 1	2:00 08/05/08 11:5	2 EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.54	1	08/04/08 1	2:00 08/05/08 11:5	2 EPA 3050	B 60,6010B	MG
Chromium, Total	11		mg/kg	0.54	1	08/04/08 1	2:00 08/05/08 11:5	2 EPA 3050	B 60,6010B	MG
Lead, Total	11		mg/kg	2.7	1	08/04/08 1	2:00 08/05/08 11:5	2 EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.09	1	08/04/08 2	23:00 08/05/08 18:0	4 EPA 7471	a 64,7471A	HG
Selenium, Total	ND		mg/kg	2.7	1	08/04/08 1	2:00 08/05/08 11:5	2 EPA 3050	B 60,6010B	MG
Silver, Total									3 60.6010B	MG

									08070817:	11
Project Name:	WAYLA		CENTER			L	ab Number:	I	L0811375	
Project Number:	12069-0	54				F	Report Date:	(08/07/08	
			SA	MPLE	RESULT	S				
Lab ID:	L081137	75-02				C	Date Collected:	(08/01/08 09:	00
Client ID:	S10					C	Date Received:	(08/01/08	
Sample Location:	WAYLAN	ND, MA				F	ield Prep:	I	Not Specifie	d
Matrix:	Soil									
Percent Solids:	90%				Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepared		Method	Method	Analyst
Total Metals by MC	CP 6000/70	000 series								
Arsenic, Total	6.4		mg/kg	0.54	1	08/04/08 12	:00 08/05/08 11:55	5 EPA 3050	B 60,6010B	MG
Barium, Total	30		mg/kg	0.54	1	08/04/08 12	:00 08/05/08 11:55	5 EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.54	1	08/04/08 12	:00 08/05/08 11:55	5 EPA 3050	B 60,6010B	MG
Chromium, Total	14		mg/kg	0.54	1	08/04/08 12	:00 08/05/08 11:55	5 EPA 3050	B 60,6010B	MG
Lead, Total	9.1		mg/kg	2.7	1	08/04/08 12	:00 08/05/08 11:55	5 EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.09	1	08/04/08 23	:00 08/05/08 18:06	6 EPA 7471	a 64,7471A	HG
Selenium, Total	ND		mg/kg	2.7	1	08/04/08 12	:00 08/05/08 11:55	5 EPA 3050	B 60,6010B	MG

									08070817:	11
Project Name:	WAYLA		CENTER				Lab Number:	I	L0811375	
Project Number:	12069-0	54					Report Date:	(08/07/08	
			SA	MPLE	RESULT	S				
Lab ID:	L081137	5-03					Date Collected:	(08/01/08 09:	50
Client ID:	S16						Date Received:	(08/01/08	
Sample Location:	WAYLAN	ND, MA					Field Prep:	I	Not Specifie	d
Matrix:	Soil									
Percent Solids:	94%				Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepare	d Analyzed	Method	Method	Analyst
Total Metals by MC	CP 6000/70	000 series								
Arsenic, Total	5.5		mg/kg	0.50	1	08/04/08 1	2:00 08/05/08 11:58	3 EPA 3050	B 60,6010B	MG
Barium, Total	26		mg/kg	0.50	1	08/04/08 1	2:00 08/05/08 11:58	3 EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.50	1	08/04/08 1	2:00 08/05/08 11:58	3 EPA 3050	B 60,6010B	MG
Chromium, Total	11		mg/kg	0.50	1	08/04/08 1	2:00 08/05/08 11:58	3 EPA 3050	B 60,6010B	MG
Lead, Total	4.5		mg/kg	2.5	1	08/04/08 1	2:00 08/05/08 11:58	3 EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.08	1	08/04/08 2	3:00 08/05/08 18:12	2 EPA 7471/	A 64,7471A	HG
Selenium, Total	ND		mg/kg	2.5	1	08/04/08 1	2:00 08/05/08 11:58	3 EPA 3050	B 60,6010B	MG
Silver, Total										

										08070817:	11
Project Name:	WAYLAN		CENTER				Lab	Number:		L0811375	
Project Number:	12069-0	54					Repo	ort Date:		08/07/08	
			SA	MPLE	RESULT	S					
Lab ID: Client ID: Sample Location: Matrix:	L081137 SE1 WAYLAN Soil						Date	Collected: Received: Prep:		08/01/08 10: 08/01/08 Not Specifie	
Percent Solids:	85%				Dilution	Date		Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepare	ed	Analyzed	Method	Method	Analyst
Total Metals by MC	P 6000/70	00 series									
Arsenic, Total	5.8		mg/kg	0.54	1	08/04/08	12:00 0	8/05/08 12:00) EPA 3050	B 60,6010B	MG
Barium, Total	20		mg/kg	0.54	1	08/04/08	12:00 0	8/05/08 12:00	EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.54	1	08/04/08	12:00 0	8/05/08 12:00) EPA 3050	B 60,6010B	MG
Chromium, Total	7.3		mg/kg	0.54	1	08/04/08	12:00 0	8/05/08 12:00) EPA 3050	B 60,6010B	MG
Lead, Total	ND		mg/kg	2.7	1	08/04/08	12:00 0	8/05/08 12:00) EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.10	1	08/04/08 2	23:00 0	8/05/08 18:13	BEPA 7471	A 64,7471A	HG
Selenium, Total	ND		mg/kg	2.7	1	08/04/08	12:00 0	8/05/08 12:00) EPA 3050	B 60,6010B	MG
Silver, Total	ND		mg/kg	0.54	1	08/04/08	12:00 0	8/05/08 12:00) EPA 3050	B 60,6010B	MG

										08070817:	11
Project Name:	WAYLAN		CENTER				Lab Num	ber:		L0811375	
Project Number:	12069-0	54					Report D	ate:		08/07/08	
			SA	MPLE	RESULT	s					
Lab ID: Client ID: Sample Location: Matrix:	L081137 SE2 WAYLAN Soil						Date Coll Date Rec Field Pre	eived	:	08/01/08 11 08/01/08 Not Specifie	
Percent Solids:	83%				Dilution	Date	-	ate	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepare	ed Ana	lyzed	Method	Method	Analyst
Total Metals by MC	P 6000/70	00 series									
Arsenic, Total	6.4		mg/kg	0.58	1	08/04/08 1	2:00 08/05/	08 12:0	3 EPA 3050	B 60,6010B	MG
Barium, Total	32		mg/kg	0.58	1	08/04/08 1	2:00 08/05/	08 12:0	3 EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.58	1	08/04/08 1	2:00 08/05/	08 12:0	3 EPA 3050	B 60,6010B	MG
Chromium, Total	12		mg/kg	0.58	1	08/04/08 1	2:00 08/05/	08 12:0	3 EPA 3050	B 60,6010B	MG
Lead, Total	3.9		mg/kg	2.9	1	08/04/08 1	2:00 08/05/	08 12:0	3 EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.10	1	08/04/08 2	23:00 08/05/	08 18:1	5 EPA 7471	A 64,7471A	HG
Selenium, Total	ND		mg/kg	2.9	1	08/04/08 1	2:00 08/05/	08 12:0	3 EPA 3050	B 60,6010B	MG
Silver, Total	ND		mg/kg	0.58	1	08/04/08 1	2:00 08/05/	08 12:0	3 EPA 3050	B 60,6010B	MG

Project Name:WAYLAND TOWN CENTERProject Number:12069-054

 Lab Number:
 L0811375

 Report Date:
 08/07/08

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals by MCP	6000/7000 series for sa	ample(s):	01-05	Batch: W	/G331366-1			
Arsenic, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Barium, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Cadmium, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Chromium, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Lead, Total	ND	mg/kg	2.5	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Selenium, Total	ND	mg/kg	2.5	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Silver, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualif	ier Units	RDL	Dilutior Factor		Date Analyzed	Analytical Method	
Total Metals by MCP	6000/7000 series f	or sample(s):	01-05	Batch:	WG331485-1			
Mercury, Total	ND	mg/kg	0.08	1	08/04/08 23:00	08/05/08 17:38	64,7471A	HG

Prep Information

Digestion Method: EPA 7471A

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054

 Lab Number:
 L0811375

 Report Date:
 08/07/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals by MCP 6000/7000 series As	ssociated sample(s): 01-05	Batch: WG331	366-2 WG331366-3		
Arsenic, Total	89	92	75-125	3	30
Barium, Total	90	91	75-125	1	30
Cadmium, Total	92	95	75-125	3	30
Chromium, Total	90	93	75-125	3	30
Lead, Total	92	91	75-125	1	30
Selenium, Total	89	91	75-125	2	30
Silver, Total	92	94	75-125	2	30
Total Metals by MCP 6000/7000 series As	ssociated sample(s): 01-05	Batch: WG331	485-2 WG331485-3		
Mercury, Total	98	100	75-125	2	30

INORGANICS & MISCELLANEOUS

							(08070817:11	
Project Name:	WAYLAND TC	WN CENT	ER				Lab Number:	L0811375	
Project Number:	12069-054						Report Date:	08/07/08	
			SA	MPLE R	ESULTS				
Lab ID: Client ID: Sample Location: Matrix:	L0811375-01 S8 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	08/01/08 0 08/01/08 Not Specif	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Solids, Total	88		%	0.10	1	-	08/02/08 13:50	30,2540G	NM

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Lab ID: Client ID: Sample Location: Matrix:	L0811375-02 S10 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	08/01/08 (08/01/08 Not Speci	
Project Name: Project Number:	WAYLAND TO 12069-054	WN CENT		MPLE R	ESULTS		Lab Number: Report Date:	L0811375 08/07/08	i

1

-

%

08/02/08 13:50

30,2540G

NM

90

Parameter	Result	Qualifier	Units	RDL	Factor	Prepared	Analyzed	Method	Analyst
					Dilution	Date	Date	Analytical	
Matrix:	Soil								
Sample Location:	WAYLAND, MA						Field Prep:	Not Speci	fied
Client ID:	S16						Date Received:	08/01/08	0.00
Lab ID:	L0811375-03						Date Collected:	08/01/08 (19·50
			SA	MPLE R	RESULTS				
Project Number:	12069-054						Report Date:	08/07/08	
Project Name:	WAYLAND TO	WN CENT	ER				Lab Number:	L0811375	
							(08070817:11	

1

-

%

08/02/08 13:50

30,2540G

NM

94

							(08070817:11	
Project Name:	WAYLAND TO	WN CENT	ſER				Lab Number:	L0811375	
Project Number:	12069-054						Report Date:	08/07/08	
			SA	MPLE R	ESULTS				
Lab ID: Client ID: Sample Location: Matrix:	L0811375-04 SE1 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	08/01/08 1 08/01/08 Not Specifi	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Solids, Total	85		%	0.10	1	-	08/02/08 13:50	30,2540G	NM

							(08070817:11	
Project Name:	WAYLAND TC	WN CENT	ΓER				Lab Number:	L0811375	
Project Number:	12069-054						Report Date:	08/07/08	
			SA	MPLE R	ESULTS				
Lab ID: Client ID: Sample Location: Matrix:	L0811375-05 SE2 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	08/01/08 1 08/01/08 Not Specif	-
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Solids, Total	83		%	0.10	1	-	08/02/08 13:50	30,2540G	NM

Project Name: Project Number:	WAYLAND TOWN CEN 12069-054		b Duplicate Analy Batch Quality Control		Lab Num Report D	E0011373
arameter		Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Associated sample(s):	01-05 QC Batch ID: W	G331294-1 QC Sample: L0	811343-01 Client ID: DU	P Sample		
Solids, Total		86	88	%	2	20

. .

Project Name:WAYLAND TOWN CENTERProject Number:12069-054

Lab Number: L0811375 Report Date: 08/07/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
А	Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0811375-01A	Amber 250ml unpreserved	A	N/A	2C	Y	Absent	MCP-BA-6010T(180),MCP-AS- 6010T(180),EPH-DELUX- 04(14),TS(7),MCP-PB- 6010T(180),MCP-8082- 04(14),MCP-AG-6010T(180),MCP- SE-6010T(180),MCP- 7471T(28),MCP-CD- 6010T(180),MCP-CR-6010T(180)
L0811375-02A	Amber 250ml unpreserved	A	N/A	2C	Y	Absent	MCP-BA-6010T(180),MCP-AS- 6010T(180),EPH-DELUX- 04(14),TS(7),MCP-PB- 6010T(180),MCP-8082- 04(14),MCP-AG-6010T(180),MCP- SE-6010T(180),MCP- 7471T(28),MCP-CD- 6010T(180),MCP-CR-6010T(180)
L0811375-03A	Amber 250ml unpreserved	A	N/A	2C	Y	Absent	MCP-BA-6010T(180),MCP-AS- 6010T(180),EPH-DELUX- 04(14),TS(7),MCP-PB- 6010T(180),MCP-8082- 04(14),MCP-AG-6010T(180),MCP- SE-6010T(180),MCP- 7471T(28),MCP-CD- 6010T(180),MCP-CR-6010T(180)
L0811375-04A	Amber 250ml unpreserved	A	N/A	2C	Y	Absent	MCP-BA-6010T(180),MCP-AS- 6010T(180),EPH-DELUX- 04(14),TS(7),MCP-PB- 6010T(180),MCP-8082- 04(14),MCP-AG-6010T(180),MCP- SE-6010T(180),MCP- 7471T(28),MCP-CD- 6010T(180),MCP-CR-6010T(180)
L0811375-05A	Amber 250ml unpreserved	A	N/A	2C	Y	Absent	MCP-BA-6010T(180),MCP-AS- 6010T(180),EPH-DELUX- 04(14),TS(7),MCP-PB- 6010T(180),MCP-8082- 04(14),MCP-AG-6010T(180),MCP- SE-6010T(180),MCP- 7471T(28),MCP-CD- 6010T(180),MCP-CR-6010T(180)

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054

Lab Number: L0811375 Report Date: 08/07/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0811375

 Report Date:
 08/07/08

REFERENCES

- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 61 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH). Massachusetts Department of Environmental Protection, DEA/ORS/BWSC. May 2004, Revision 1.1.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Form 3005	If this Chain of Custody Ree Laboratory should (specify i	The required minimum field QC sample Marix Spike (MS) samples for MCP M This Chain of Custody Record (specify)		Date Time	Firm	Print	Sign	shed by	Date 8 11 107 Time 1745	Print DOT ISATTS	sign Dan 15 and a	Relinquished by	Date Strop Time 154	Mar Matter Webon	- John Marken	Sampled and Reanquisher by			STC			S 85	Sample No.	H&A CONTACT	H&A FILE NO.	HALEY& Haley & A ALDRICH Suite 2200. Boston, M.	ALPHA Job #_
WHEFE Lavoratory	cord identifies samples defined as Drink if applicable]analyz	The required minimum field QC samples: as designated in BWSC CAM-VII have been or will Marix Spike (MS) samples for MCP Metals and/or Cyanide are reladed and identified berein <u>This</u> Chain of Custody Record (specify) includes		Date	Firm	Print	Sign		- Date 8/1/05 Time	Print William	Sing 2	Received by	5 Dan 8 1 08 Tim		Sign Doc (Se	Received by			چ ج			11/2 2815 0-6	Date Time Depth	Steve Pravice	1069-054	Haley & Aldrich, Inc. 465 Medford St., Suite 2200, Boston, MA 02129-1402	
CANARY Project Manager PL	ing Water Samples, Trip Blanks and Fiel	AM-VII have been or will be collected, as appropriate, to meet the juded and identified herein. 	Presumprive Certainty para rackade (Laboratory to	Broomphive Certainty Data Pa	A Sample chilled				14U	mellender	- \		545							\ll	 	X. 1:05	VOA ARNA PALLONIY MCP Munt	CONTACT	LABORATORY	CHA	
PINK - Haley & Aldrich Laboratory G	1 Duplicates are included and identified an	The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty Marity Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein. This Chain of Custody Record (specify) includes		kane (Laboratory to use apolica	C NAOH E H.SO	PRESERVATION KEY					GLIOS					UDÖLT				44 1.4	$\langle \gamma \rangle$	Ž Ž	Pesticitation Provide the second seco	Analysis Requeste	Desterne	CHAIN OF CUSTODY R	
GOLDENKOD - Haley & Allrich Contact	If this Chain of Custody Record identifies samples defined as Dritking Water Samples. Trip Blanks and Field Puplicates are included and identified and analysis of TICs are required, as appropriate. Laboratory should (specify if applicable)analyz	Presumptive Certainty.	Descurrentivo Containto	3 I	G Methanol	KEY	Velune	Preservative	Clear Glass	Amber Glass	NOV 05-1	* offinite	Preservative	Plasic Buttle	VOA Vial Amber Glass							· · · · · · · · · · · · · · · · · · ·	Reactivity Ignitability Corrosivity		MA	DY RECORD	
	ate. RC-GW1 RC-GW2	RCS	Required Reporting Lim				2 If YES, please explain in section below.	tive	ilass	 (ilass			, anivo		$\frac{1}{1000} = \frac{1}{25} \int \frac{1}{25} \int \frac{1}{100} \int \frac{1}{$	Sampling Comments	TONAC		SET IT	2) PUJS SOX2	(DICILA)	Laboratory to use applic other	C Number of (special instructions, p Containers nu	PROJECT MANAGER	DELIVERY DATE		
AUGUST 2003			Required Reporting Limits and Data Quality Objectives				section below.	ampered with? YES NO						r (> 01-20 5			taget avent	SEPH Carbon + 16.	2082	ollickA & Metals	Laboratory to use applicable DEP CAN methods, unless otherwise directed.	Comments (special instructions, precautions, additional method numbers, etc.)	ar hora	AN STAT	France (017) 806-7600 Fax (617) 886-7600 Page of	

Form 300: WHEFE Lowestory CANARY Poper Manager	If this Chain of Custody Record identifies samples defined as Dri king Water Samples. Trip Blanks and Field Duplicates are included and identified and analysis of TICs Laboratory should (specify if applicable)analyz	The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Marrix Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein.	Presumptive Cer	Date Time B :	Firm		Sign	Received by	Date 8/1/05 Time 1745 Date 8/1/05 Time 174			22 C2 02	Date 1911/08 Time 1545 Date 11/08 Time 1545	1	Siller Sun Dor Backs	Sampled and Refinquisher by Received by						0100	1105 30 5192 Sullis	Sample No. Date Time Depth Type		E 12009-	HALEY& Haley & Aldrich, Inc. 465 Medford St.,	ALPHA Job # 1.0%11378
nger PINK - Haley & Aldrich Laboratory GOLDENKOD - Haley & Aldrich Contact	ip Blanks and Field Duplicates are included and identified and analysis of TIC's are required, as appropriate.	APII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty, 1 and identified herein. does not include samples defined as Drinking Water Samples.	Presumptive Certainty Data Packade (Laboratory to use applicable DEP CAM methods)		E II,SO ₁ G	PRESERVATION KEY						SOLID				LIQCID				$\langle \rangle$	$\langle \rangle \rangle$		X XX	A ARY PALL only MCP Munt Postucions PCBs VPH Full Suite Cranges only LPH Cranges only Cranges only	Analysis Requested	ADDRESS Destavout MA	CHAIN OF CUSTODY RECORD	
ct AFGUSE 2003	RCGW2		Required Reporting Limits and Data Quality Objectives	(circle)			Volume If YES, please explain in section below.	Preservative Evicence samples were tampered with? VES NO	Clear Glass	A mber Cilass	VOA Vial		Preservance Volume		Amber Glass Br MCP RC-SI	Sampling Comments	< tone	(argue)	(3)EPH carbon t	2 222 Strd 3		(Contrat of Matals	Laboratory to use applicable DEP CAM methods, unless otherwise directed.	Comments Number of Containers (special instructions, precautions, additional method numbers, etc.)		PROJECT MANAGER	Phone (617) 886-7400 Fax (617) 886-7600	

ANALYTICAL REPORT

Lab Number:	L0811374
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN:	Kate Leblanc
Project Name:	WAYLAND TOWN CENTER
Project Number:	12069-054
Report Date:	08/08/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WAYLAND TOWN CENTER	Lab Number:	L0811374
Project Number:	12069-054	Report Date:	08/08/08

Alpha Sample ID	Client ID	Sample Location
L0811374-01	S15	WAYLAND, MA
L0811374-02	S11	WAYLAND, MA
L0811374-03	S12	WAYLAND, MA
L0811374-04	S1	WAYLAND, MA
L0811374-05	S4	WAYLAND, MA
L0811374-06	S6	WAYLAND, MA
L0811374-07	S7	WAYLAND, MA

 Lab Number:
 L0811374

 Report Date:
 08/08/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status							
А	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES						
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES						
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES						
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	YES						
A response to questions E and F is required for "Presumptive Certainty" status								
Е	Were all QC performance standards and recommendations for the specified method(s) achieved?	NO						
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO						

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WAYLAND TOWN CENTERProject Number:12069-054

 Lab Number:
 L0811374

 Report Date:
 08/08/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

MCP Related Narratives

EPH

L0811374-02 has elevated detection limits due to the dilution required by matrix interferences encountered during the concentration of the sample.

PCB

In reference to question E:

L0811374-01 through -07: The Continuing Calibration criteria was not met for the confirmatory column;

however, the sample was non-detect for the target analytes. Therefore, no further actions were taken.

Metals

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kini l. Witter

Title: Technical Director/Representative

Date: 08/08/08

ORGANICS

PETROLEUM HYDROCARBONS

Project Name:	WAYLAND TOWN C	ENTER			Lab Number:	L0811374
Project Number:	12069-054				Report Date:	08/08/08
		SAMPLE	RESULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L0811374-01 S15 WAYLAND, MA Soil 61,EPH-04-1 08/05/08 16:43 MF 98%				Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date:	07/30/08 12:00 08/01/08 Not Specified EPA 3546 08/02/08 09:30
		Quality Contro	ol Information			
Condition of sample receiv	ved:				Satisfactor	у
Sample Temperature upor	n receipt:				Received	on Ice
Sample Extraction method	d:				Extracted	Per the Method
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
		Nesun	Quaimer	Units	KDL	
Extractable Petrol	eum Hydrocarbons					
C9-C18 Aliphatics		ND		mg/kg	6.80	1
C19-C36 Aliphatics		ND		mg/kg	6.80	1
C11-C22 Aromatics		12.8		mg/kg	6.80	1
C11-C22 Aromatics, Adjust	sted	12.8		mg/kg	6.80	1
Naphthalene		ND		mg/kg	0.340	1
2-Methylnaphthalene		ND		mg/kg	0.340	1
Acenaphthylene		ND		mg/kg	0.340	1
Acenaphthene		ND		mg/kg	0.340	1
Fluorene		ND		mg/kg	0.340	1
Phenanthrene		ND		mg/kg	0.340	1

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.340

0.340

0.340

0.340

0.340

0.340

0.340

0.340

0.340

0.340

0.340

1

1

1

1

1

1

1

1

1

1

1

08080809:11

Anthracene

Pyrene

Chrysene

Fluoranthene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Surr	ogate	% Recovery	Qualifier		ceptance Criteria	
Extractable Petrol	eum Hydrocarbons					
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Lab ID: Client ID: Sample Location:	L0811374-01 S15 WAYLAND, MA				Date Collected: Date Received: Field Prep:	07/30/08 12:00 08/01/08 Not Specified
		SAMPLE RE	SULTS			
Project Number:	12069-054				Report Date:	08/08/08
Project Name:	WAYLAND TOWN CENTE	ER			Lab Number:	L0811374
						08080809:11

51

81

90

90

40-140

40-140

40-140

40-140

Surrogate

o-Terphenyl

Chloro-Octadecane

2-Fluorobiphenyl

2-Bromonaphthalene

Project Name:	ject Name: WAYLAND TOWN C				Lab Number:	L0811374
Project Number:	12069-054				Report Date:	08/08/08
-		SAMPLE I	RESULTS		-	
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L0811374-02 S11 WAYLAND, MA Soil 61,EPH-04-1 08/05/08 22:11 MF 97%				Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date:	07/30/08 13:44 08/01/08 Not Specified EPA 3546 08/02/08 09:30
		Quality Contro	Information			
Condition of sample receiv	ved.				Satisfactor	v
Sample Temperature upon receipt:					Received	-
Sample Extraction method	•					Per the Method
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
	eum Hydrocarbons	Result	Qualifier	Units	RDL	Dilution Factor
	eum Hydrocarbons	Result	Qualifier	Units mg/kg	RDL 13.7	Dilution Factor
Extractable Petrol	eum Hydrocarbons		Qualifier			
Extractable Petrol	eum Hydrocarbons	ND	Qualifier	mg/kg	13.7	2
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics		ND ND	Qualifier	mg/kg mg/kg	13.7 13.7	2 2
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics		ND ND 23.4	Qualifier	mg/kg mg/kg mg/kg	13.7 13.7 13.7	2 2 2
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjust		ND ND 23.4 23.4	Qualifier	mg/kg mg/kg mg/kg mg/kg	13.7 13.7 13.7 13.7 13.7	2 2 2 2 2
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene		ND ND 23.4 23.4 ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg	13.7 13.7 13.7 13.7 13.7 0.687	2 2 2 2 2 2 2
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene		ND ND 23.4 23.4 ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg	13.7 13.7 13.7 13.7 0.687 0.687 0.687 0.687	2 2 2 2 2 2 2 2 2
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene		ND ND 23.4 23.4 ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	13.7 13.7 13.7 13.7 13.7 0.687 0.687 0.687	2 2 2 2 2 2 2 2 2 2 2 2
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene		ND ND 23.4 23.4 ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	13.7 13.7 13.7 13.7 0.687 0.687 0.687 0.687	2 2 2 2 2 2 2 2 2 2 2 2 2 2
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene		ND ND 23.4 23.4 ND ND ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	13.7 13.7 13.7 13.7 0.687 0.687 0.687 0.687 0.687 0.687	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Extractable Petrole C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics C11-C22 Aromatics, Adjus Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene		ND ND 23.4 23.4 ND ND ND ND ND ND ND ND ND ND ND	Qualifier	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	13.7 13.7 13.7 13.7 0.687 0.687 0.687 0.687 0.687 0.687 0.687	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ND

ND

ND

ND

ND

ND

ND

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.687

0.687

0.687

0.687

0.687

0.687

0.687

0.687

2

2

2

2

2

2

2

2

08080809:11

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene

Chrysene

Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Client ID:	S11				Date Received:	08/01/08
Lab ID:	L0811374-02				Date Collected:	07/30/08 13:4
		SAMPLE	RESULTS			
Project Number:	12069-054				Report Date:	08/08/08
Project Name:	WAYLAND TOWN CENTE	R			Lab Number:	L0811374
						08080809:11

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	42		40-140	
o-Terphenyl	80		40-140	
2-Fluorobiphenyl	87		40-140	
2-Bromonaphthalene	88		40-140	

Project Name:	WAYLAND TOWN CE	ENTER			Lab Number:	L0811374
Project Number:	12069-054				Report Date:	08/08/08
		SAMPLE	RESULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L0811374-03 S12 WAYLAND, MA Soil 61,EPH-04-1 08/05/08 17:16 MF 98%				Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date	08/01/08 Not Specifie EPA 3546
		Quality Contro	ol Information			
Condition of sample receiv	ved:	adding contro			Satisfacto	Drv
Sample Temperature upon receipt:					Received	
Sample Extraction method:					Extracted	Per the Method
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Extractable Petrol	eum Hydrocarbons					
C9-C18 Aliphatics		ND		mg/kg	6.80	1
C19-C36 Aliphatics		ND		mg/kg	6.80	1
C11-C22 Aromatics		10.6		mg/kg	6.80	1
C11-C22 Aromatics, Adjust	sted	10.6		mg/kg	6.80	1
Naphthalene		ND		mg/kg	0.340	1
2-Methylnaphthalene		ND		mg/kg	0.340	1
Acenaphthylene		ND		mg/kg	0.340	1
Acenaphthene	enaphthene ND mg/kg		mg/kg	0.340	1	
Fluorene		ND		mg/kg	0.340	1
Phenanthrene		ND		mg/kg	0.340	1
Anthracene		ND		mg/kg	0.340	1
Fluoranthene		ND		mg/kg	0.340	1
Pyrene		ND		mg/kg	0.340	1
Benzo(a)anthracene		ND		mg/kg	0.340	1

ND

ND

ND

ND

ND

ND

1

1

1

1

1

1

1

0.340

0.340

0.340

0.340

0.340

0.340

0.340

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

08080809:11

Chrysene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene

Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Client ID:	S12				Date Received:	08/01/08
Lab ID:	L0811374-03				Date Collected:	07/31/08 08:1
		SAMPLE	RESULTS			
Project Number:	12069-054				Report Date:	08/08/08
Project Name:	WAYLAND TOWN CENTE	R			Lab Number:	L0811374
						08080809:11

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	64		40-140	
o-Terphenyl	76		40-140	
2-Fluorobiphenyl	89		40-140	
2-Bromonaphthalene	88		40-140	

Project Name: Project Number:	WAYLAND TOWN CEN 12069-054	ITER SAMPLE	RESULTS		Lab Number: Report Date:	L0811374 08/08/08
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L0811374-04 S1 WAYLAND, MA Soil 61,EPH-04-1 08/05/08 17:49 MF 97%				Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date:	07/31/08 09:55 08/01/08 Not Specified EPA 3546 08/02/08 09:30
		Quality Contro	ol Information			
Sample Temperature upo Sample Extraction method					Received of Extracted	on Ice Per the Method
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Extractable Petrol	eum Hydrocarbons					
C9-C18 Aliphatics		ND		mg/kg	6.87	1
C19-C36 Aliphatics		ND		mg/kg	6.87	1
C11-C22 Aromatics		11.4		mg/kg	6.87	1
C11-C22 Aromatics, Adjust	sted	11.4		mg/kg	6.87	1
Naphthalene		ND		mg/kg	0.344	1
2-Methylnaphthalene		ND		mg/kg	0.344	1
Acenaphthylene		ND		mg/kg	0.344	1
Acenaphthene		ND		mg/kg	0.344	1
Fluorene		ND		mg/kg	0.344	1
Phenanthrene		ND		mg/kg	0.344	1
Anthracene		ND		mg/kg	0.344	1

ND

ND

ND

ND

ND

ND

ND

ND

ND

1

1

1

1

1

1

1

1

1

1

0.344

0.344

0.344

0.344

0.344

0.344

0.344

0.344

0.344

0.344

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

08080809:11

Fluoranthene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene

Pyrene

Chrysene

Sample Location:	WAYLAND, MA			Field Prep:	Not Specified
Client ID:	S1			Date Received:	
Lab ID:	L0811374-04			Date Collected:	07/31/08 09:5
		SAMPLE	RESULTS		
Project Number:	12069-054			Report Date:	08/08/08
Project Name:	WAYLAND TOWN CENTE	ER		Lab Number:	L0811374
					08080809:11

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	55		40-140	
o-Terphenyl	74		40-140	
2-Fluorobiphenyl	80		40-140	
2-Bromonaphthalene	80		40-140	

Project Name: Project Number: Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	WAYLAND TOWN CE 12069-054 L0811374-05 S4 WAYLAND, MA Soil 61,EPH-04-1 08/05/08 18:22 MF 96%	ENTER SAMPLE	RESULTS		Lab Number: Report Date: Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date	08/01/08 Not Specified EPA 3546
Condition of sample receir Sample Temperature upo Sample Extraction method	n receipt:	Quality Contro	ol Information		Satisfact Received Extracted	-
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Extractable Petrol	eum Hydrocarbons					
C9-C18 Aliphatics		ND		mg/kg	6.94	1
C19-C36 Aliphatics		ND		mg/kg	6.94	1
C11-C22 Aromatics		ND		mg/kg	6.94	1
C11-C22 Aromatics, Adju	sted	ND		mg/kg	6.94	1
Naphthalene		ND		mg/kg	0.347	1
2-Methylnaphthalene		ND		mg/kg	0.347	1
Acenaphthylene		ND		mg/kg	0.347	1
Acenaphthene		ND		mg/kg	0.347	1
Fluorene		ND		mg/kg	0.347	1
Phenanthrene						
		ND		mg/kg	0.347	1
Anthracene		ND ND		mg/kg mg/kg	0.347 0.347	1

ND

ND

ND

ND

ND

ND

ND

ND

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.347

0.347

0.347

0.347

0.347

0.347

0.347

0.347

0.347

1

1

1

1

1

1

1

1

1

08080809:11

Pyrene

Chrysene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

						08080809:11
Project Name:	WAYLAND TOWN CENTE	R			Lab Number:	L0811374
Project Number:	12069-054				Report Date:	08/08/08
		SAMPLE	RESULTS			
Lab ID:	L0811374-05				Date Collected:	07/31/08 11:00
Client ID:	S4				Date Received:	08/01/08
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	45		40-140	
o-Terphenyl	74		40-140	
2-Fluorobiphenyl	88		40-140	
2-Bromonaphthalene	89		40-140	

Project Name: Project Number: Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	WAYLAND TOWN C 12069-054 L0811374-06 S6 WAYLAND, MA Soil 61,EPH-04-1 08/05/08 18:54 MF 94%	ENTER SAMPLE I	RESULTS		Lab Number: Report Date: Date Collected Date Received Field Prep: Extraction Method: Extraction Date	: 08/01/08 Not Specified EPA 3546
		Quality Contro	Information			
Condition of sample receive Sample Temperature upon Sample Extraction method	n receipt:				Satisfact Received Extracted	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Extractable Petrol	eum Hydrocarbons					
C9-C18 Aliphatics		ND		mg/kg	7.09	1
C19-C36 Aliphatics		ND		mg/kg	7.09	1
C11-C22 Aromatics		ND		mg/kg	7.09	1
C11-C22 Aromatics, Adjus	sted	ND		mg/kg	7.09	1
Naphthalene		ND		mg/kg	0.355	1
2-Methylnaphthalene		ND		mg/kg	0.355	1
Acenaphthylene		ND		mg/kg	0.355	1
Acenaphthene		ND		mg/kg	0.355	1
Fluorene		ND		mg/kg	0.355	1
Phenanthrene		ND		mg/kg	0.355	1
Anthracene		ND		mg/kg	0.355	1
Fluoranthene		ND		mg/kg	0.355	1
Pyrene		ND		mg/kg	0.355	1
Benzo(a)anthracene		ND		mg/kg	0.355	1

ND

ND

ND

ND

ND

ND

1

1

1

1

1

1

1

0.355

0.355

0.355

0.355

0.355

0.355

0.355

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

08080809:11

Chrysene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Parameter	eum Hydrocarbons	Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Client ID:	S6				Date Received:	08/01/08
Lab ID:	L0811374-06				Date Collected:	07/31/08 13:30
		SAMPLE	RESULTS			
Project Number:	12069-054				Report Date:	08/08/08
Project Name:	WAYLAND TOWN CENT	ER			Lab Number:	L0811374
						08080809:11

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	46		40-140	
o-Terphenyl	71		40-140	
2-Fluorobiphenyl	82		40-140	
2-Bromonaphthalene	82		40-140	

						000000000000000000000000000000000000000
Project Name:	WAYLAND TOWN CE	NTER			Lab Number:	L0811374
Project Number:	12069-054				Report Date:	08/08/08
		SAMPLE	RESULTS			
Lab ID:	L0811374-07				Date Collected:	07/31/08 15:
Client ID:	S7				Date Received:	08/01/08
Sample Location:	WAYLAND, MA				Field Prep:	Not Specifie
Matrix: Analytical Method:	Soil				Extraction Method:	EPA 3546
-	61,EPH-04-1				Extraction Date:	08/02/08 09:
Analytical Date: Analyst:	08/05/08 19:27 MF					
Percent Solids:	96%					
r creent bonds.	5070					
		Quality Contro	ol Information			
Condition of sample recei	ved:				Satisfacto	iry
Sample Temperature upo	n receipt:				Received	on Ice
Sample Extraction method	d:				Extracted	Per the Method
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Extractable Petrol	eum Hydrocarbons					
C9-C18 Aliphatics		ND		mg/kg	6.94	1
C19-C36 Aliphatics		ND		mg/kg	6.94	1
C11-C22 Aromatics		8.56		mg/kg	6.94	1
C11-C22 Aromatics, Adju	sted	8.56		mg/kg	6.94	1
Naphthalene		ND		mg/kg	0.347	1
2-Methylnaphthalene		ND		mg/kg	0.347	1
Acenaphthylene		ND		mg/kg	0.347	1
Acenaphthene		ND		mg/kg	0.347	1
Fluorene		ND		mg/kg	0.347	1
Phenanthrene		ND		mg/kg	0.347	1
Anthracene		ND		mg/kg	0.347	1
Fluoranthene		ND		mg/kg	0.347	1

ND

ND

ND

ND

ND

ND

ND

ND

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg mg/kg

mg/kg

0.347

0.347

0.347

0.347

0.347

0.347

0.347

0.347

0.347

1

1

1

1

1

1

1

1

1

08080809:11

Pyrene

Chrysene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)Pyrene

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WAYLAND, MA				Field Prep:	Not Specified
Client ID:	S7				Date Received:	08/01/08
Lab ID:	L0811374-07				Date Collected:	07/31/08 15:30
		SAMPLE	RESULTS			
Project Number:	12069-054				Report Date:	08/08/08
Project Name:	WAYLAND TOWN CEN	TER			Lab Number:	L0811374
						08080809:11

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	53		40-140	
o-Terphenyl	80		40-140	
2-Fluorobiphenyl	93		40-140	
2-Bromonaphthalene	92		40-140	

L0811374

08/08/08

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054

Method Blank Analysis Batch Quality Control

Extraction Method:	EPA 3546
Extraction Date:	08/02/08 09:30

Lab Number:

Report Date:

Analytical Method:	
Analytical Date:	
Analyst:	

61,EPH-04-1 08/05/08 15:01 MF

Parameter	Result	Qua	lifier	Units	RDL
Extractable Petroleum Hydroca	rbons for sampl	e(s):	01-07	Batch:	WG331278-1
C9-C18 Aliphatics	ND			mg/kg	6.67
C19-C36 Aliphatics	ND			mg/kg	6.67
C11-C22 Aromatics	ND			mg/kg	6.67
C11-C22 Aromatics, Adjusted	ND			mg/kg	6.67
Naphthalene	ND			mg/kg	0.333
2-Methylnaphthalene	ND			mg/kg	0.333
Acenaphthylene	ND			mg/kg	0.333
Acenaphthene	ND			mg/kg	0.333
Fluorene	ND			mg/kg	0.333
Phenanthrene	ND			mg/kg	0.333
Anthracene	ND			mg/kg	0.333
Fluoranthene	ND			mg/kg	0.333
Pyrene	ND			mg/kg	0.333
Benzo(a)anthracene	ND			mg/kg	0.333
Chrysene	ND			mg/kg	0.333
Benzo(b)fluoranthene	ND			mg/kg	0.333
Benzo(k)fluoranthene	ND			mg/kg	0.333
Benzo(a)pyrene	ND			mg/kg	0.333
Indeno(1,2,3-cd)Pyrene	ND			mg/kg	0.333
Dibenzo(a,h)anthracene	ND			mg/kg	0.333
Benzo(ghi)perylene	ND			mg/kg	0.333

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	58		40-140	
o-Terphenyl	65		40-140	
2-Fluorobiphenyl	80		40-140	
2-Bromonaphthalene	80		40-140	

08080809:11

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054 Lab Number: L0811374 Report Date: 08/08/08

	LCS			CSD	%Recovery		
Parameter	%Recovery			covery	Limits	RPD	RPD Limits
Extractable Petroleum Hydrocarbons	Associated sample(s):	01-07	Batch:	WG331278-2	WG331278-3		
C9-C18 Aliphatics	51			54	40-140	6	25
C19-C36 Aliphatics	60			62	40-140	3	25
C11-C22 Aromatics	80			80	40-140	0	25
Naphthalene	64			64	40-140	0	25
2-Methylnaphthalene	64			63	40-140	2	25
Acenaphthylene	64			64	40-140	0	25
Acenaphthene	68			68	40-140	0	25
Fluorene	74			73	40-140	1	25
Phenanthrene	80			78	40-140	3	25
Anthracene	78			76	40-140	3	25
Fluoranthene	86			85	40-140	1	25
Pyrene	86			85	40-140	1	25
Benzo(a)anthracene	86			86	40-140	0	25
Chrysene	87			87	40-140	0	25
Benzo(b)fluoranthene	84			84	40-140	0	25
Benzo(k)fluoranthene	87			87	40-140	0	25
Benzo(a)pyrene	77			77	40-140	0	25
Indeno(1,2,3-cd)Pyrene	79			79	40-140	0	25
Dibenzo(a,h)anthracene	82			82	40-140	0	25
Benzo(ghi)perylene	80			80	40-140	0	25
Nonane (C9)	39			44	30-140	12	25

08080809:11

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054 Lab Number: L0811374 Report Date: 08/08/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
xtractable Petroleum Hydrocarbons	Associated sample(s): 01-07	Batch: WG331278-	2 WG331278-3		
Decane (C10)	46	51	40-140	10	25
Dodecane (C12)	54	56	40-140	4	25
Tetradecane (C14)	55	57	40-140	4	25
Hexadecane (C16)	58	60	40-140	3	25
Octadecane (C18)	59	60	40-140	2	25
Nonadecane (C19)	60	61	40-140	2	25
Eicosane (C20)	60	63	40-140	5	25
Docosane (C22)	62	64	40-140	3	25
Tetracosane (C24)	65	67	40-140	3	25
Hexacosane (C26)	62	63	40-140	2	25
Octacosane (C28)	62	63	40-140	2	25
Triacontane (C30)	60	62	40-140	3	25
Hexatriacontane (C36)	60	61	40-140	2	25
% Naphthalene Breakthrough	0	0		NC	
% 2-Methylnaphthalene Breakthrough	0	0		NC	

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054 Lab Number: L0811374 Report Date: 08/08/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Extractable Petroleum Hydrocarbons As	sociated sample(s): 01-0	7 Batch: WG331278-2	2 WG331278-3		

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
Chloro-Octadecane	52	56	40-140
o-Terphenyl	85	84	40-140
2-Fluorobiphenyl	83	84	40-140
2-Bromonaphthalene	85	86	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

 Lab Number:
 L0811374

 Report Date:
 08/08/08

Fractionation Check Standard Quality Control

Fractionation check standard for 200818205

arameter	% Recovery	QC Criteria
C9-C18 Aliphatics	77	40-140
C19-C36 Aliphatics	76	40-140
C11-C22 Aromatics	86	40-140
Naphthalene	82	40-140
2-Methylnaphthalene	78	40-140
Acenaphthylene	76	40-140
Acenaphthene	80	40-140
Fluorene	79	40-140
Phenanthrene	78	40-140
Anthracene	82	40-140
Fluoranthene	84	40-140
Pyrene	84	40-140
Benzo(a)anthracene	82	40-140
Chrysene	88	40-140
Benzo(b)fluoranthene	81	40-140
Benzo(k)fluoranthene	97	40-140
Benzo(a)pyrene	78	40-140
Indeno(1,2,3-cd)Pyrene	76	40-140
Dibenzo(a,h)anthracene	83	40-140
Benzo(g,h,i)perylene	82	40-140
Nonane	72	30-140
Decane	77	40-140
Dodecane	80	40-140
Tetradecane	76	40-140
Hexadecane	78	40-140
Octadecane	76	40-140
Nonadecane	75	40-140
Eicosane	77	40-140
Docosane	79	40-140
Tetracosane	83	40-140
Hexacosane	78	40-140
Octacosane	77	40-140
Triacontane	76	40-140
Hexatriacontane	75	40-140
% Naphthalene Breakthrough	0	40-140
% 2-Methylnaphthalene Breakthrough	0	40-140

 Lab Number:
 L0811374

 Report Date:
 08/08/08

Fractionation Check Standard Quality Control

Fractionation check standard for 200818205

Surrogate	% Recovery	QC Criteria	
Chloro-Octadecane	66	40-140	
o-Terphenyl	83	40-140	
2-Fluorobiphenyl	75	40-140	
2-Bromonaphthalene	76	40-140	

PCBS

08080809:11

L0811374

08/08/08

Lab Number:

Report Date:

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054

Lab ID:	L0811374-01	Date Collected:	07/30/08 12:00
Client ID:	S15	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/05/08 21:33	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	98%		

Result	Qualifier	Units	RDL	Dilution Factor
ND		ua/ka	24.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	NDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kg	ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	43		30-150	A
Decachlorobiphenyl	40		30-150	А
2,4,5,6-Tetrachloro-m-xylene	53		30-150	В
Decachlorobiphenyl	62		30-150	В

WAYLAND TOWN CENTER

08080809:11

Lab Number: L0811374 Report Date: 08/08/08

Project Number: 12069-054

Project Name:

Lab ID:	L0811374-02	Date Collected:	07/30/08 13:45
Client ID:	S11	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/05/08 21:46	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	97%		

			24.4	4
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	55		30-150	А		
Decachlorobiphenyl	48		30-150	А		
2,4,5,6-Tetrachloro-m-xylene	68		30-150	В		
Decachlorobiphenyl	74		30-150	В		

08080809:11

Lab Number: L0811374 Report Date: 08/08/08

Project Number: 12069-054

Lab ID:	L0811374-03	Date Collected:	07/31/08 08:15
Client ID:	S12	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/05/08 22:00	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	98%		

Result	Qualifier	Units	RDL	Dilution Factor
			24.0	4
		ug/kg		1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
ND		ug/kg	34.0	1
	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	NDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kg	ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0 ND ug/kg 34.0

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	Α
Decachlorobiphenyl	53		30-150	А
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	78		30-150	В

08080809:11

Lab Number: L0811374

Report Date:

08/08/08

Project Number: 12069-054

Lab ID:	L0811374-04	Date Collected:	07/31/08 09:55
Client ID:	S1	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/05/08 22:14	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	97%		

			24.4	4
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
ND		ug/kg	34.4	1
	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4 ND ug/kg 34.4

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		30-150	A
Decachlorobiphenyl	54		30-150	А
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	77		30-150	В

08080809:11

Lab Number: L0811374 Report Date: 08/08/08

Project Number: 12069-054

Lab ID:	L0811374-05	Date Collected:	07/31/08 11:00
Client ID:	S4	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/05/08 22:28	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	96%		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Polychlorinated Biphenyls by MCP 8082					
Ann 1	ND			04.7	
Aroclor 1016	ND		ug/kg	34.7	1
Aroclor 1221	ND		ug/kg	34.7	1
Aroclor 1232	ND		ug/kg	34.7	1
Aroclor 1242	ND		ug/kg	34.7	1
Aroclor 1248	ND		ug/kg	34.7	1
Aroclor 1254	ND		ug/kg	34.7	1
Aroclor 1260	ND		ug/kg	34.7	1
Aroclor 1262	ND		ug/kg	34.7	1
Aroclor 1268	ND		ug/kg	34.7	1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	57		30-150	A		
Decachlorobiphenyl	56		30-150	А		
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В		
Decachlorobiphenyl	76		30-150	В		

08080809:11

Lab Number: L0811374 Report Date: 08/08/08

Project Number: 12069-054

Lab ID:	L0811374-06	Date Collected:	07/31/08 13:30
Client ID:	S6	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/05/08 22:42	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	94%		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Polychlorinated Biphenyls by MCP 8082					
Aroclor 1016	ND		ua/ka	35.5	1
			ug/kg		I
Aroclor 1221	ND		ug/kg	35.5	1
Aroclor 1232	ND		ug/kg	35.5	1
Aroclor 1242	ND		ug/kg	35.5	1
Aroclor 1248	ND		ug/kg	35.5	1
Aroclor 1254	ND		ug/kg	35.5	1
Aroclor 1260	ND		ug/kg	35.5	1
Aroclor 1262	ND		ug/kg	35.5	1
Aroclor 1268	ND		ug/kg	35.5	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		30-150	A
Decachlorobiphenyl	64		30-150	А
2,4,5,6-Tetrachloro-m-xylene	77		30-150	В
Decachlorobiphenyl	88		30-150	В

08080809:11

 Lab Number:
 L0811374

 Report Date:
 08/08/08

Project Number: 12069-054

Lab ID:	L0811374-07	Date Collected:	07/31/08 15:30
Client ID:	S7	Date Received:	08/01/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil	Extraction Method:	EPA 3546
Analytical Method:	64,8082	Extraction Date:	08/04/08 11:15
Analytical Date:	08/05/08 22:56	Cleanup Method1:	EPA 3665A
Analyst:	JB		
Percent Solids:	96%		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Polychlorinated Biphenyls by MCP 8082					
Aroclor 1016	ND		ug/kg	34.7	1
Aroclor 1221	ND		ug/kg	34.7	1
Aroclor 1232	ND		ug/kg	34.7	1
Aroclor 1242	ND		ug/kg	34.7	1
Aroclor 1248	ND		ug/kg	34.7	1
Aroclor 1254	ND		ug/kg	34.7	1
Aroclor 1260	ND		ug/kg	34.7	1
Aroclor 1262	ND		ug/kg	34.7	1
Aroclor 1268	ND		ug/kg	34.7	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	40		30-150	A
Decachlorobiphenyl	40		30-150	А
2,4,5,6-Tetrachloro-m-xylene	48		30-150	В
Decachlorobiphenyl	54		30-150	В

Project Name:	WAYLAND TOWN CENTER	Lab Number:	L0811374
Project Number:	12069-054	Report Date:	08/08/08

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 64,8082 08/04/08 13:55 JB Extraction Method:EPA 3546Extraction Date:08/04/08 08:45Cleanup Method1:EPA 3665ACleanup Date1:08/04/08

Parameter	Result	Qualifie	r	Units	RDL
Polychlorinated Biphenyls by MCP	8082 for sa	mple(s):	01-07	Batch:	WG331341-1
Aroclor 1016	ND			ug/kg	33.3
Aroclor 1221	ND			ug/kg	33.3
Aroclor 1232	ND			ug/kg	33.3
Aroclor 1242	ND			ug/kg	33.3
Aroclor 1248	ND			ug/kg	33.3
Aroclor 1254	ND			ug/kg	33.3
Aroclor 1260	ND			ug/kg	33.3
Aroclor 1262	ND			ug/kg	33.3
Aroclor 1268	ND			ug/kg	33.3

			Acceptance	e
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	А
Decachlorobiphenyl	78		30-150	А
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	92		30-150	В

Page 35 of 60

08080809:11

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054

 Lab Number:
 L0811374

 Report Date:
 08/08/08

Parameter	LCS eter %Recovery		%Recovery Limits	RPD Limits	
Polychlorinated Biphenyls by MCP 8082	Associated sample(s): 01-0	07 Batch: WG331341	I-2 WG331341-3		
Aroclor 1016	89	75	40-140	17	30
Aroclor 1260	83	74	40-140	11	30

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qualifier	%Recovery Qualifier	Criteria	Column
				_
2,4,5,6-Tetrachloro-m-xylene	72	65	30-150	A
Decachlorobiphenyl	84	77	30-150	А
2,4,5,6-Tetrachloro-m-xylene	76	69	30-150	В
Decachlorobiphenyl	90	80	30-150	В

METALS

									08080809:	11
Project Name:	WAYLA		CENTER				Lab Number:	ļ	L0811374	
Project Number:	12069-0	54					Report Date:	(08/08/08	
			SA	MPLE	RESULT	S				
Lab ID:	L081137	4-01					Date Collected:	(07/30/08 12:	00
Client ID:	S15						Date Received:	(08/01/08	
Sample Location:	WAYLAN	ND, MA					Field Prep:	I	Not Specifie	d
Matrix:	Soil									
Percent Solids:	98%				Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepare		Method	Method	Analyst
Total Metals by MC	P 6000/70	000 series								
Arsenic, Total	3.3		mg/kg	0.49	1	08/04/08 1	2:00 08/05/08 11:19	9 EPA 3050	B 60,6010B	MG
Barium, Total	36		mg/kg	0.49	1	08/04/08 1	2:00 08/05/08 11:19	9 EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.49	1	08/04/08 1	2:00 08/05/08 11:19	9 EPA 3050	B 60,6010B	MG
Chromium, Total	13		mg/kg	0.49	1	08/04/08 1	2:00 08/05/08 11:19	9 EPA 3050	B 60,6010B	MG
Lead, Total	4.6		mg/kg	2.5	1	08/04/08 1	2:00 08/05/08 11:19	9 EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.08	1	08/04/08 2	3:00 08/05/08 17:52	2 EPA 7471/	a 64,7471A	HG
Selenium, Total	ND		mg/kg	2.5	1	08/04/08 1	2:00 08/05/08 11:19	9 EPA 3050	B 60,6010B	MG
Silver, Total										

									08080809:	11
Project Name:	WAYLAN		CENTER				Lab Number: L0811374			
Project Number:	12069-0	54					Report Date:	(08/08/08	
			SA	MPLE	RESULT	S				
Lab ID: Client ID: Sample Location: Matrix:	L081137 S11 WAYLAN Soil						Date Collected: Date Received: Field Prep:	(07/30/08 13: 08/01/08 Not Specifie	
Percent Solids:	97%				Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepare		Method	Method	Analyst
Total Metals by MC	P 6000/70	00 series								
Arsenic, Total	4.9		mg/kg	0.48	1	08/04/08 1	2:00 08/05/08 11:21	I EPA 3050E	B 60,6010B	MG
Barium, Total	22		mg/kg	0.48	1	08/04/08 1	2:00 08/05/08 11:21	I EPA 3050E	60,6010B	MG
Cadmium, Total	ND		mg/kg	0.48	1	08/04/08 1	2:00 08/05/08 11:21	I EPA 3050E	60,6010B	MG
Chromium, Total	8.3		mg/kg	0.48	1	08/04/08 1	2:00 08/05/08 11:21	EPA 3050E	60,6010B	MG
Lead, Total	4.4		mg/kg	2.4	1	08/04/08 1	2:00 08/05/08 11:21	I EPA 3050E	60,6010B	MG
Mercury, Total	0.10		mg/kg	0.08	1	08/04/08 2	3:00 08/05/08 17:54	4 EPA 7471 <i>A</i>	A 64,7471A	HG
Selenium, Total	ND		mg/kg	2.4	1	08/04/08 1	2:00 08/05/08 11:21	EPA 3050E	B 60,6010B	MG
Silver, Total	ND		mg/kg	0.48	1	08/04/08 1	2:00 08/05/08 11:21	EPA 3050E	3 60,6010B	MG

									08080809:	11
Project Name:	WAYLA		CENTER				Lab Number: L0811374			
Project Number:	12069-0	54					Report Date:	(08/08/08	
			SA	MPLE	RESULT	S				
Lab ID: Client ID: Sample Location: Matrix:	L081137 S12 WAYLAN Soil						Date Collected Date Received Field Prep:	: (07/31/08 08: 08/01/08 Not Specifie	
Percent Solids:	98%				Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepare	d Analyzed	Method	Method	Analyst
Total Metals by MC	P 6000/70	00 series								
Arsenic, Total	4.3		mg/kg	0.50	1	08/04/08 1	2:00 08/05/08 11:2	4 EPA 3050	B 60,6010B	MG
Barium, Total	17		mg/kg	0.50	1	08/04/08 1	2:00 08/05/08 11:2	4 EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.50	1	08/04/08 1	2:00 08/05/08 11:2	4 EPA 3050	B 60,6010B	MG
Chromium, Total	6.0		mg/kg	0.50	1	08/04/08 1	2:00 08/05/08 11:2	4 EPA 3050	B 60,6010B	MG
Lead, Total	ND		mg/kg	2.5	1	08/04/08 1	2:00 08/05/08 11:2	4 EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.08	1	08/04/08 2	3:00 08/05/08 17:5	6 EPA 7471	4 64,7471A	HG
Selenium, Total	ND		mg/kg	2.5	1	08/04/08 1	2:00 08/05/08 11:2	4 EPA 3050	B 60,6010B	MG

										08080809:	11
Project Name:	WAYLAND TOWN CENTER						Lab Number:			L0811374	
Project Number:	12069-054					Report Date:				08/08/08	
			SA	MPLE	RESULT	S					
Lab ID: Client ID: Sample Location: Matrix:	L081137 S1 WAYLAN Soil					Date Collected: Date Received: Field Prep:			07/31/08 09:55 08/01/08 Not Specified		
Percent Solids:	97%				B 11 (1			5.4	_	Analytical	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepar	ed	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals by MC	P 6000/70	00 series									
Arsenic, Total	4.8		mg/kg	0.47	1	08/04/08	12:00 0	8/05/08 11:41	EPA 3050	B 60,6010B	MG
Barium, Total	22		mg/kg	0.47	1	08/04/08	12:00 0	8/05/08 11:41	EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.47	1	08/04/08	12:00 0	8/05/08 11:41	EPA 3050	B 60,6010B	MG
Chromium, Total	19		mg/kg	0.47	1	08/04/08	12:00 0	8/05/08 11:41	EPA 3050	B 60,6010B	MG
Lead, Total	3.6		mg/kg	2.4	1	08/04/08	12:00 0	8/05/08 11:41	EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.08	1	08/04/08	23:00 0	8/05/08 17:57	EPA 7471	4 64,7471A	HG
Selenium, Total	ND		mg/kg	2.4	1	08/04/08	12:00 0	8/05/08 11:41	EPA 3050	B 60,6010B	MG
Silver, Total	ND		mg/kg	0.47	1	08/04/08	12:00 0	8/05/08 11:41	EPA 3050	B 60,6010B	MG

									08080809:	11	
Project Name:	WAYLAND TOWN CENTER					I	Lab Number:			L0811374	
Project Number:	12069-054				I	Report Date:	(08/08/08			
			SA	MPLE	RESULT	S					
Lab ID:	L081137	4-05				Date Collected:			07/31/08 11:00		
Client ID:	S4			Date Received:				08/01/08			
Sample Location:	WAYLAN	ND, MA				F	Field Prep:	1	Not Specified		
Matrix:	Soil										
Percent Solids:	96%				Dilution	Date	Date	Prep	Analytical		
Parameter	Result	Qualifier	Units	RDL	Factor	Preparec		Method	Method	Analyst	
Total Metals by MC	CP 6000/70	000 series									
Arsenic, Total	4.4		mg/kg	0.48	1	08/04/08 12	2:00 08/05/08 11:44	EPA 3050	B 60,6010B	MG	
Barium, Total	18		mg/kg	0.48	1	08/04/08 12	2:00 08/05/08 11:44	EPA 3050	B 60,6010B	MG	
Cadmium, Total	ND		mg/kg	0.48	1	08/04/08 12	2:00 08/05/08 11:44	EPA 3050	B 60,6010B	MG	
Chromium, Total	7.0		mg/kg	0.48	1	08/04/08 12	2:00 08/05/08 11:44	EPA 3050	B 60,6010B	MG	
Lead, Total	3.1		mg/kg	2.4	1	08/04/08 12	2:00 08/05/08 11:44	EPA 3050	B 60,6010B	MG	
Mercury, Total	ND		mg/kg	0.08	1	08/04/08 23	3:00 08/05/08 17:59) EPA 7471	a 64,7471A	HG	
Selenium, Total	ND		mg/kg	2.4	1	08/04/08 12	2:00 08/05/08 11:44	EPA 3050E	B 60,6010B	MG	

										08080809:	11
Project Name:	WAYLAN		CENTER				Lab	Number:		L0811374	
Project Number:	12069-0	54					Repo	ort Date:		08/08/08	
			SA	MPLE	RESULT	S					
Lab ID: Client ID:	L081137	4-06						Collected: Received:		07/31/08 13:	.30
Sample Location:	S6 WAYLAN	ND, MA						Prep:		08/01/08 Not Specifie	d
Matrix:	Soil										
Percent Solids:	94%				Dilution	Date		Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepare	ed	Analyzed	Method	Method	Analyst
Total Metals by MC	CP 6000/70	000 series									
Arsenic, Total	3.9		mg/kg	0.51	1	08/04/08	12:00 0	8/05/08 11:46	6 EPA 3050	B 60,6010B	MG
Barium, Total	33		mg/kg	0.51	1	08/04/08	12:00 0	8/05/08 11:46	6 EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.51	1	08/04/08	12:00 0	8/05/08 11:46	6 EPA 3050	B 60,6010B	MG
Chromium, Total	15		mg/kg	0.51	1	08/04/08	12:00 0	8/05/08 11:46	6 EPA 3050	B 60,6010B	MG
Lead, Total	5.4		mg/kg	2.5	1	08/04/08	12:00 0	8/05/08 11:46	6 EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.08	1	08/04/08	23:00 0	8/05/08 18:01	EPA 7471	A 64,7471A	HG
Selenium, Total	ND		mg/kg	2.5	1	08/04/08	12:00 0	8/05/08 11:46	6 EPA 3050	B 60,6010B	MG

										08080809:	11
Project Name:	WAYLAN		CENTER				Lab	Number:		L0811374	
Project Number:	12069-0	54					Rep	ort Date:		08/08/08	
			SA	MPLE	RESULT	S					
Lab ID: Client ID: Sample Location:	L081137 S7 WAYLAN						Date	e Collected: e Received: d Prep:		07/31/08 15: 08/01/08 Not Specifie	
Matrix: Percent Solids:	Soil 96%										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepare		Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals by MC	P 6000/70	00 series									
Arsenic, Total	6.6		mg/kg	0.49	1	08/04/08	12:00 (08/05/08 11:49	EPA 3050	B 60,6010B	MG
Barium, Total	50		mg/kg	0.49	1	08/04/08	12:00 (08/05/08 11:49	EPA 3050	B 60,6010B	MG
Cadmium, Total	ND		mg/kg	0.49	1	08/04/08	12:00 (08/05/08 11:49	EPA 3050	B 60,6010B	MG
Chromium, Total	14		mg/kg	0.49	1	08/04/08	12:00 (08/05/08 11:49	EPA 3050	B 60,6010B	MG
Lead, Total	6.2		mg/kg	2.4	1	08/04/08	12:00 (08/05/08 11:49	EPA 3050	B 60,6010B	MG
Mercury, Total	ND		mg/kg	0.08	1	08/04/08	23:00 (08/05/08 18:03	3 EPA 7471	A 64,7471A	HG
Selenium, Total	ND		mg/kg	2.4	1	08/04/08	12:00 (08/05/08 11:49	EPA 3050	B 60,6010B	MG
Silver, Total	ND		mg/kg	0.49	1	08/04/08	12:00 (08/05/08 11:49	EPA 3050	B 60,6010B	MG

Project Name:WAYLAND TOWN CENTERProject Number:12069-054

 Lab Number:
 L0811374

 Report Date:
 08/08/08

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals by MCP	6000/7000 series for sa	ample(s):	01-07	Batch: W	G331366-1			
Arsenic, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Barium, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Cadmium, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Chromium, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Lead, Total	ND	mg/kg	2.5	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Selenium, Total	ND	mg/kg	2.5	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG
Silver, Total	ND	mg/kg	0.50	1	08/04/08 12:00	08/05/08 10:44	60,6010B	MG

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualif	ier Units	RDL	Dilutior Factor		Date Analyzed	Analytical Method	
Total Metals by MCF	9 6000/7000 series fo	or sample(s):	01-07	Batch:	WG331485-1			
Mercury, Total	ND	mg/kg	0.08	1	08/04/08 23:00	08/05/08 17:38	64,7471A	HG

Prep Information

Digestion Method: EPA 7471A

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054

 Lab Number:
 L0811374

 Report Date:
 08/08/08

arameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
otal Metals by MCP 6000/7000 series	Associated sample(s):	01-07	Batch: WG33	1366-2 WG331366-3		
Arsenic, Total	89		92	75-125	3	30
Barium, Total	90		91	75-125	1	30
Cadmium, Total	92		95	75-125	3	30
Chromium, Total	90		93	75-125	3	30
Lead, Total	92		91	75-125	1	30
Selenium, Total	89		91	75-125	2	30
Silver, Total	92		94	75-125	2	30
otal Metals by MCP 6000/7000 series	Associated sample(s):	01-07	Batch: WG33	1485-2 WG331485-3		
Mercury, Total	98		100	75-125	2	30

INORGANICS & MISCELLANEOUS

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Lab ID: Client ID: Sample Location: Matrix:	L0811374-01 S15 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	07/30/08 ⁄ 08/01/08 Not Speci	
Project Name: Project Number:	WAYLAND TC 12069-054	WN CENT		MPLE R	ESULTS		Lab Number: Report Date:	L0811374 08/08/08	

0.10

1

-

08/02/08 13:50

30,2540G

NM

%

98

Solids, Total

							(08080809:11	
Project Name: Project Number:	WAYLAND TC 12069-054	WN CENT	FER				Lab Number: Report Date:	L0811374 08/08/08	
			SA	MPLE R	ESULTS				
Lab ID: Client ID: Sample Location: Matrix:	L0811374-02 S11 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	07/30/08 1 08/01/08 Not Specif	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Solids, Total	97		%	0.10	1	-	08/02/08 13:50	30,2540G	NM

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Lab ID: Client ID: Sample Location: Matrix:	L0811374-03 S12 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	07/31/08 (08/01/08 Not Speci	
Project Number:	12069-054		SA	MPLE R	ESULTS		Report Date:	08/08/08	
Project Name:	WAYLAND TO	WN CENT	ER				Lab Number:	L0811374	

0.10

1

-

08/02/08 13:50

30,2540G

NM

%

98

Solids, Total

							(08080809:11	
Project Name:	WAYLAND TO	WN CENT	FER				Lab Number:	L0811374	
Project Number:	12069-054						Report Date:	08/08/08	
			SA	MPLE R	ESULTS				
Lab ID: Client ID: Sample Location: Matrix:	L0811374-04 S1 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	07/31/08 0 08/01/08 Not Specif	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Solids, Total	97		%	0.10	1	-	08/02/08 13:50	30,2540G	NM

							(08080809:11	
Project Name:	WAYLAND TC	WN CENT	FER				Lab Number:	L0811374	
Project Number:	12069-054						Report Date:	08/08/08	
			SA	MPLE R	ESULTS				
Lab ID: Client ID: Sample Location: Matrix:	L0811374-05 S4 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	07/31/08 1 08/01/08 Not Specif	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Solids, Total	96		%	0.10	1	-	08/02/08 13:50	30,2540G	NM

							(08080809:11	
Project Name:	WAYLAND TC	WN CENT	ΓER				Lab Number:	L0811374	
Project Number:	12069-054						Report Date:	08/08/08	
			SA	MPLE R	ESULTS				
Lab ID: Client ID: Sample Location: Matrix:	L0811374-06 S6 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	07/31/08 1 08/01/08 Not Specif	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Solids, Total	94		%	0.10	1	-	08/02/08 13:50	30,2540G	NM

							(08080809:11	
Project Name:	WAYLAND TO	WN CENT	FER				Lab Number:	L0811374	
Project Number:	12069-054						Report Date:	08/08/08	
			SA	MPLE R	ESULTS				
Lab ID: Client ID: Sample Location: Matrix:	L0811374-07 S7 WAYLAND, MA Soil						Date Collected: Date Received: Field Prep:	07/31/08 1 08/01/08 Not Specif	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Solids, Total	96		%	0.10	1	-	08/02/08 13:50	30,2540G	NM

Project Name: Project Number:	WAYLAND TOWN CE 12069-054		ab Duplicate Analy Batch Quality Control		Lab Nun Report I	E0011374
Parameter		Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Associated sample(s):	01-07 QC Batch ID: \	NG331294-1 QC Sample: L	0811343-01 Client ID: DU	P Sample		
Solids, Total		86	88	%	2	20

Project Name: WAYLAND TOWN CENTER Project Number: 12069-054

Lab Number: L0811374 Report Date: 08/08/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
А	Absent

Container Information Container ID Temp Pres Analysis **Container Type** Cooler pН Seal MCP-BA-6010T(180),MCP-AS-L0811374-01A Amber 250ml unpreserved A N/A 2C Υ Absent 6010T(180),EPH-DELUX-04(14), TS(7), MCP-PB-6010T(180),MCP-8082 04(14),MCP-AG-6010T(180),MCP-SE-6010T(180),MCP-7471T(28), MCP-CD-6010T(180),MCP-CR-6010T(180) N/A 2C I 0811374-02A А MCP-BA-6010T(180),MCP-AS-Amber 250ml unpreserved Y Absent 6010T(180), EPH-DELUX-04(14), TS(7), MCP-PB-6010T(180),MCP-8082-04(14), MCP-AG-6010T(180), MCP-SE-6010T(180),MCP-7471T(28),MCP-CD-6010T(180),MCP-CR-6010T(180) L0811374-03A 2C Amber 250ml unpreserved А N/A Y Absent MCP-BA-6010T(180),MCP-AS-6010T(180),EPH-DELUX-04(14), TS(7), MCP-PB-6010T(180),MCP-8082-04(14), MCP-AG-6010T(180), MCP-SE-6010T(180),MCP-7471T(28), MCP-CD-6010T(180),MCP-CR-6010T(180) L0811374-04A Amber 250ml unpreserved A N/A 2C Absent MCP-BA-6010T(180),MCP-AS-Υ 6010T(180),EPH-DELUX-04(14),TS(7),MCP-PB-6010T(180),MCP-8082-04(14), MCP-AG-6010T(180), MCP-SE-6010T(180),MCP-7471T(28), MCP-CD-6010T(180),MCP-CR-6010T(180) MCP-BA-6010T(180),MCP-AS-L0811374-05A Α N/A 2C Absent Amber 250ml unpreserved Y 6010T(180),EPH-DELUX-

04(14),TS(7),MCP-PB-6010T(180),MCP-8082-

SE-6010T(180),MCP-7471T(28),MCP-CD-

SE-6010T(180),MCP-7471T(28),MCP-CD-

04(14), MCP-AG-6010T(180), MCP-

6010T(180),MCP-CR-6010T(180)

04(14), MCP-AG-6010T(180), MCP-

6010T(180),MCP-CR-6010T(180)

MCP-BA-6010T(180),MCP-AS-6010T(180),EPH-DELUX-04(14),TS(7),MCP-PB-6010T(180),MCP-8082-

L0811374-06A

Amber 250ml unpreserved

N/A

А

2C

Y

Absent

Project Name:WAYLAND TOWN CENTERProject Number:12069-054

Lab Number: L0811374 Report Date: 08/08/08

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0811374-07A	Amber 250ml unpreserved	A	N/A	2C	Y	Absent	MCP-BA-6010T(180),MCP-AS- 6010T(180),EPH-DELUX- 04(14),TS(7),MCP-PB- 6010T(180),MCP-8082-

6010T(180),EPH-DELUX-04(14),TS(7),MCP-PB-6010T(180),MCP-8082-04(14),MCP-AG-6010T(180),MCP-SE-6010T(180),MCP-7471T(28),MCP-CD-6010T(180),MCP-CR-6010T(180)

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-054

Lab Number: L0811374 Report Date: 08/08/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0811374

 Report Date:
 08/08/08

REFERENCES

- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 61 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH). Massachusetts Department of Environmental Protection, DEA/ORS/BWSC. May 2004, Revision 1.1.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

AUGUST 2003		gert Manager PINK - Haley & Aldrich Laboratory GOLDENROD - Haley & Adrich Contact	Form 3008 WHITE - Liboratory CANARY Hojset Manager
1		If this Chain of Custody Record identifies samples defined as Drinking Water Samples. Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as appropriate Laboratory should (specify if applicable)analyz	If this Chain of Custody Record identifies samples defined as Drinking Water Sam Laboratory should (specify if appleable)analyz
$\square R(-GW) = \square S2 = \square GW3$		The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Matrix Spike (MS) samples for MCP Metals and ar Cyanide are included and identified herein. This Chain of Custody Record (specify) includesdoes not include samples defined as Drinking Water Samples.	The required minimum field QC samples, as designated in BWSC CAM-VII have been or will Merrix Spike (MS) samples for MCP Metals and <i>st</i> Cyanide are included and identified herein.
Required Reporting Limits and Data Quality Objectives	Required	Presumprive Certainty Data Package (Laboratory to use applicable DEP CAM methods)	
		A Samperchilds C. NaCH E 15554 V INVENTION B Sample filtered D HNO. F IICL H Water-NatISO4 (circle)	Finn Finn Finn One Tim:
		PRESERVATION KEY	
If YES, please explain in section below.	IFYES, J	Sor 802 802 Volume	Sign Sign
Evidence samples were tampered with? YES NO		A A A Preservative	Time 1745 Date 17406 Time 1 Received by
	~ 3	Clear Glass	HINK IN ALXS Product ((Con 1)
	<u> </u>	SOLID	isantz sign A. I
	, î	Preservative Volume	Dac 5/ 1/08 Time 545 Date 7/18 Time 1545 Reinquished by A Received by
FOR MER RE-SI	o .	Amser Glass Plastic Hottle	P.Y.Y.
in the price		VOV Vial	Sampled and Relinquisting the Received by
SamplingComments	Sampling		
taget cualytes	(\rightarrow	24 1550 V W
3)=pficiber and	<u>ي</u> (
E RAS SURL	0	~~ ~~	212 4/15/4 28/2
D ACT & Metrije directed.	Labora	XX	1105, 9-0, 2011 solar A 215
(special instructions, precautions, additional method numbers, etc.)		VOA AffNe PAH oally MCP Nembr Pesticides Cranges ally PPH Full Suite Cranges ally EPH Full Suite Cranges ally TPH (specify) TCLP (specify) Reactivity Ignitability Containers	Sample No. Date Time Depth Type
NAGER Kateleblanc	PROJECT MANAGER	Analysis Requested	HAA CONTACT Steve PROVINCAL
	DELIVERY DATE TURNAROUND TIME	LABORATORY ALALA DE	t ~ ~ +50-69021
+		CHAIN OF CUSTODY RECORD	HALEY& Haley & Audren, Inc. ALDRICH Suite 2200, Boston, MA 02129-1402
Phone (617) 886-7400			ALPHA Job # 1-0611374

AUGUST 2003		mager PINK - Haley & Aldrich Laboratory GOLDENROD - Haley & Adrich Contact	Form 4008 WHITE - 1 choratory CANARY Reject Manager
	RC-GW2	rip Blanks and Field Daplicates are included and identified and analysis of TICs are required, as apprepriate.	If this Chain of Custody Record identifies samples defined as Drnking Water Samples. Trip Blanks and Field Duplicates are included and identified and analysis of TICs Laboratory should (specify if applicable) analyz
□ s1 □ s2 □ GW3		1-Vil have been or will be collected, as appropriate, to meet the requirements of Pressumptive Certainty, ad and identified herein. does not include samples defined as Drinking Water Samples.	The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Matrix Spike (MS) samples for MCP Metals and ar Cyanide are included and identified herein. This Chain of Custody Record (specify)includesdoes not include samples defined as Drnking Water Samples.
Required Reporting Limits and Data Quality Objectives	Required Reporting L	Presumptive Certainty Data Package (Laboratory to use applicable DEF CAM memoust	Presumplive Co
		Sample filtered D travo, F TICL H water National (dick)	Date Time Date Time B
		C NaOH E H ₂ SO ₄ G	
		PRESERVATION KEY	Print Print
in section below.	If YES, please explain in section below.	Soz Coz Coz Volume	
e tampered with? YES NO	Evidence samples were tampered with?	A A A Meenaine	Relinquished by Received by
		Cler Glass	
		VOA Vial Amer Glass	Print DON BAWKS Prinkelliam Milleran
		SOLID	Sign Dar Bank Sign Con
		Volane	A Received by
		Preenative	have st 1/28 time 1545 Date st 1/8 time 1545
	-	Plastic Hottle	Phin Matter Leaver Phin Dow 15 From
POR MCP RC-SI	M Jog	VOX Vial Amer Class	Sign Matter Sten Doulsant
	Sampling Comments	LIQUID	Sampled and Reliaquished the Received by
	J	21 E)	
taget countytes	tzi		
(Cr) your root	GEPH		
		$\downarrow \downarrow \downarrow \downarrow$	
RUNI	2 Q 1		1 1 SIJO #/15/K 215
+BMetals	O ACR	X	
Laboratory to use applicable DEP CAM methods, unless	Laboratory to use app		
(special instructions, precautions, additional method numbers, etc.)	(special instructions	ITNe Att only ICP Nonth CPN Nonth CPN Nonth CER CPN PH (specify) CLP (sp	Sample No. Dute Time Pepth Type
		Analysis Requested	
2 Leyy	TURNAROUND TIME	Westmark MA	PROJECT NAME What I would al
21102	DELIVERY DATE	LABORATORY A WAS DELIV	3
		CHAIN OF CUSTODY RECORD	HALEY& Haley & Aldrich, Inc. ALDRICH South 2200, Boston, MA 02129-1402
Phone (617) 886-7400			ALPHA Job # 1-06 11374

ANALYTICAL REPORT

Lab Number:	L0809833
Client:	Haley & Aldrich, Inc.
	465 Medford Street, Suite 2200
	Charlestown, MA 02129-1400
ATTN:	Kate Leblanc
Project Name:	PROPOSED WAYLAND TEAM CENTER
Project Number:	12069-052
Report Date:	07/11/08
-	

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:	PROPOSED WAYLAND TEAM CENTER	Lab Number:	L0809833
Project Number:	12069-052	Report Date:	07/11/08

Alpha Sample ID	Client ID	Sample Location
L0809833-01	SV-1	WAYLAND, MA
L0809833-02	SV-2	WAYLAND, MA
L0809833-03	SV-3	WAYLAND, MA

 Lab Number:
 L0809833

 Report Date:
 07/11/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

TO-15

L0809833-01 through -03 have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L0809833-02 The Acetone result slightly exceeded the calibration in original analysis. The Acetone result was within calibration on the duplicate analysis. The Relative Percent Difference between the sample and duplicate was within criteria for Acetone. No further action taken.

The WG328542-2 LCS recovery for Vinyl Acetate is outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

Fixed Gas - Helium

L0809833-02: Prior to sample analysis, the canister was pressurized with UHP Nitrogen in order to facilitate

Project Name:PROPOSED WAYLAND TEAM CENTERProject Number:12069-052

 Lab Number:
 L0809833

 Report Date:
 07/11/08

Case Narrative (continued)

the transfer of sample to the Gas Chromatograph. The addition of Nitrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kathle M. itruin

Title: Technical Director/Representative

Date: 07/11/08

AIR

Project Name: PROPOSED WAYLAND TEAM CENTER Project Number: 12069-052

Lab Number: L0809833 **Report Date:**

07/11/08

Lab ID:	L0809833-01
Client ID:	SV-1
Sample Location:	WAYLAND, MA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	07/09/08 20:08
Analyst:	AR

Date Collected:	07/01/08 12:10
Date Received:	07/03/08
Field Prep:	Not Specified

ppbV	,	ug/m	3		Dilution
Results	RDL	Results	RDL	Qualifier	Factor
unds in Air					
ND	2.00	ND	10.9		10
ND	2.00	ND	13.7		10
ND	2.00	ND	10.9		10
ND	2.00	ND	8.09		10
ND	2.00	ND	7.92		10
ND	2.00	ND	14.8		10
ND	2.00	ND	9.82		10
ND	2.00	ND	15.4		10
ND	2.00	ND	12.0		10
ND	2.00	ND	8.09		10
ND	2.00	ND	9.24		10
ND	2.00	ND	9.82		10
ND	2.00	ND	4.42		10
ND	2.00	ND	12.0		10
ND	2.00	ND	12.0		10
ND	2.00	ND	7.20		10
ND	2.00	ND	9.34		10
18.2	2.00	53.5	5.89		10
ND	2.00	ND	8.19		10
ND	2.00	ND	6.26		10
ND	2.00	ND	9.82		10
478	5.00	1130	11.9		10
ND	2.00	ND	6.38		10
ND	2.00	ND	10.3		10
ND	2.00	ND	13.4		10
	Results ND ND	Results RDL ND 2.00 ND <td>Results RDL Results ND 2.00 ND ND 2.00 ND</td> <td>Results RDL Results RDL unds in Air ND 2.00 ND 10.9 ND 2.00 ND 13.7 ND 2.00 ND 13.7 ND 2.00 ND 10.9 ND 2.00 ND 10.9 ND 2.00 ND 10.9 ND 2.00 ND 8.09 ND 2.00 ND 7.92 ND 2.00 ND 14.8 ND 2.00 ND 9.82 ND 2.00 ND 15.4 ND 2.00 ND 9.82 ND 2.00 ND 9.82 ND 2.00 ND 9.82 ND 2.00 ND 9.82 ND 2.00 ND 12.0 ND 2.00 ND 12.0 ND 2.00 ND 9.34 18.2 2.00<td>Results RDL Results RDL Qualifier unds in Air ND 2.00 ND 10.9 10.9 ND 2.00 ND 13.7 10.9 10.9 10.9 ND 2.00 ND 8.09 10.9</td></td>	Results RDL Results ND 2.00 ND ND 2.00 ND	Results RDL Results RDL unds in Air ND 2.00 ND 10.9 ND 2.00 ND 13.7 ND 2.00 ND 13.7 ND 2.00 ND 10.9 ND 2.00 ND 10.9 ND 2.00 ND 10.9 ND 2.00 ND 8.09 ND 2.00 ND 7.92 ND 2.00 ND 14.8 ND 2.00 ND 9.82 ND 2.00 ND 15.4 ND 2.00 ND 9.82 ND 2.00 ND 9.82 ND 2.00 ND 9.82 ND 2.00 ND 9.82 ND 2.00 ND 12.0 ND 2.00 ND 12.0 ND 2.00 ND 9.34 18.2 2.00 <td>Results RDL Results RDL Qualifier unds in Air ND 2.00 ND 10.9 10.9 ND 2.00 ND 13.7 10.9 10.9 10.9 ND 2.00 ND 8.09 10.9</td>	Results RDL Results RDL Qualifier unds in Air ND 2.00 ND 10.9 10.9 ND 2.00 ND 13.7 10.9 10.9 10.9 ND 2.00 ND 8.09 10.9

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number:

07110813:05

07/11/08

Lab Number: L0809833

Report Date:

12069-052 SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0809833-01 SV-1 WAYLAND, MA				Date Field	Collected: Received: Prep:	07/01/0 07/03/0 Not Spe	8
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor	
	Organic Compounds							
Bromoform	0	ND	2.00	ND	20.6		10	
Bromomethane		ND	2.00	ND	7.76		10	
Carbon disulfide		ND	2.00	ND	6.22		10	
Carbon tetrachloride		ND	2.00	ND	12.6		10	
Chlorobenzene		ND	2.00	ND	9.20		10	
Chloroethane		ND	2.00	ND	5.27		10	
Chloroform		ND	2.00	ND	9.76		10	
Chloromethane		ND	2.00	ND	4.13		10	
cis-1,2-Dichloroethene		ND	2.00	ND	7.92		10	
cis-1,3-Dichloropropene		ND	2.00	ND	9.07		10	
Cyclohexane		ND	2.00	ND	6.88		10	
Dibromochloromethane		ND	2.00	ND	17.0		10	
Dichlorodifluoromethane	9	ND	2.00	ND	9.88		10	
Ethanol		ND	25.0	ND	47.1		10	
Ethyl Acetate		ND	5.00	ND	18.0		10	
Ethylbenzene		ND	2.00	ND	8.68		10	
Freon-113		ND	2.00	ND	15.3		10	
Freon-114		ND	2.00	ND	14.0		10	
Hexachlorobutadiene		ND	2.00	ND	21.3		10	
Isopropanol		26.6	5.00	65.4	12.3		10	
Methylene chloride		5.00	5.00	17.4	17.4		10	
4-Methyl-2-pentanone		ND	2.00	ND	8.19		10	
Methyl tert butyl ether		ND	2.00	ND	7.20		10	
p/m-Xylene		ND	4.00	ND	17.4		10	
o-Xylene		ND	2.00	ND	8.68		10	
Heptane		ND	2.00	ND	8.19		10	
n-Hexane		2.75	2.00	9.67	7.04		10	
Propylene		ND	2.00	ND	3.44		10	

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052

07110813:05

L0809833

07/11/08

Report Date:

Lab Number:

Lab ID: Client ID: Sample Location:	L0809833-01 SV-1 WAYLAND, MA				Date Field	Collected: Received: Prep:	07/01/0 07/03/0 Not Sp	
		ppbV		ug/m3			Dilution Factor	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	-
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	2.00	ND	8.51		10	
Tetrachloroethene		6.53	2.00	44.3	13.6		10	
Tetrahydrofuran		ND	2.00	ND	5.89		10	
Toluene		ND	2.00	ND	7.53		10	
trans-1,2-Dichloroethene	9	ND	2.00	ND	7.92		10	
trans-1,3-Dichloroproper	ne	ND	2.00	ND	9.07		10	
Trichloroethene		3.82	2.00	20.5	10.7		10	
Trichlorofluoromethane		19.7	2.00	111	11.2		10	
Vinyl acetate		ND	2.00	ND	7.04		10	
Vinyl bromide		ND	2.00	ND	8.74		10	
Vinyl chloride		ND	2.00	ND	5.11		10	

L0809833

07/11/08

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052

SAMPLE RESULTS

Date Collected:07/01/08 14:00Date Received:07/03/08Field Prep:Not Specified

Lab Number:

Report Date:

Lab ID:	L0809833-02
Client ID:	SV-2
Sample Location:	WAYLAND, MA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	07/10/08 00:25
Analyst:	AR

	ppb\	ppbV		3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Com	pounds in Air					
1,1,1-Trichloroethane	ND	0.400	ND	2.18		2
1,1,2,2-Tetrachloroethane	ND	0.400	ND	2.74		2
1,1,2-Trichloroethane	ND	0.400	ND	2.18		2
1,1-Dichloroethane	ND	0.400	ND	1.62		2
1,1-Dichloroethene	ND	0.400	ND	1.58		2
1,2,4-Trichlorbenzene	ND	0.400	ND	2.97		2
1,2,4-Trimethylbenzene	ND	0.400	ND	1.96		2
1,2-Dibromoethane	ND	0.400	ND	3.07		2
1,2-Dichlorobenzene	ND	0.400	ND	2.40		2
1,2-Dichloroethane	ND	0.400	ND	1.62		2
1,2-Dichloropropane	ND	0.400	ND	1.85		2
1,3,5-Trimethybenzene	ND	0.400	ND	1.96		2
1,3-Butadiene	ND	0.400	ND	0.884		2
1,3-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dioxane	ND	0.400	ND	1.44		2
2,2,4-Trimethylpentane	ND	0.400	ND	1.87		2
2-Butanone	19.8	0.400	58.2	1.18		2
2-Hexanone	2.69	0.400	11.0	1.64		2
3-Chloropropene	ND	0.400	ND	1.25		2
4-Ethyltoluene	ND	0.400	ND	1.96		2
Acetone	213	1.00	505	2.37		2
Benzene	ND	0.400	ND	1.28		2
Benzyl chloride	ND	0.400	ND	2.07		2
Bromodichloromethane	ND	0.400	ND	2.68		2

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052

07110813:05 Lab Number: L0809833

07/11/08

Report Date:

Lab ID: Client ID: Sample Location:	L0809833-02 SV-2 WAYLAND, MA				Date	Collected: Received: Prep:	07/01/0 07/03/0 Not Sp	8
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor	
Low Level Volatile C)rganic Compounds		KDL	results	RDE	Quanner		
Bromoform		ND	0.400	ND	4.13		2	
Bromomethane		ND	0.400	ND	1.55		2	
Carbon disulfide		0.515	0.400	1.60	1.55		2	
Carbon tetrachloride		0.515 ND	0.400	ND	2.51		2	
Chlorobenzene		ND	0.400	ND	1.84		2	
Chloroethane								
Chloroform		ND 1.12	0.400	ND	1.05		2	
Chloromethane		1.12 ND	0.400	5.47 ND	1.95 0.825		2	
cis-1,2-Dichloroethene			0.400	ND	1.58		2	
cis-1,3-Dichloropropene		ND					2	
Cyclohexane		ND	0.400	ND	1.81		2	
Dibromochloromethane		ND	0.400	ND	1.38		2	
Dichlorodifluoromethane		ND	0.400	ND	3.40		2	
Ethanol		0.486	0.400	2.40	1.98		2	
		16.8	5.00	31.6	9.41		2	
Ethyl Acetate		ND	1.00	ND	3.60		2	
Ethylbenzene		ND	0.400	ND	1.74		2	
Freon-113		ND	0.400	ND	3.06		2	
Freon-114		ND	0.400	ND	2.79		2	
Hexachlorobutadiene		ND	0.400	ND	4.26		2	
Isopropanol		17.0	1.00	41.7	2.46		2	
Methylene chloride		1.31	1.00	4.54	3.47		2	
4-Methyl-2-pentanone		ND	0.400	ND	1.64		2	
Methyl tert butyl ether		ND	0.400	ND	1.44		2	
p/m-Xylene		0.898	0.800	3.90	3.47		2	
o-Xylene		ND	0.400	ND	1.74		2	
Heptane		ND	0.400	ND	1.64		2	
n-Hexane		2.30	0.400	8.11	1.41		2	
Propylene		2.18	0.400	3.76	0.688		2	

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052

07110813:05

07/11/08

Lab Number: L0809833

Report Date:

Lab ID:L0809833-02Client ID:SV-2Sample Location:WAYLAND, MA					Date Field	Collected: Received: Prep:	07/01/0 07/03/0 Not Sp	
_		ppbV		ug/m3		Qualifian	Dilution Factor	
Parameter		Results	RDL	Results	RDL	Qualifier	1 40101	-
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	0.400	ND	1.70		2	
Tetrachloroethene		4.41	0.400	29.9	2.71		2	
Tetrahydrofuran		ND	0.400	ND	1.18		2	
Toluene		1.68	0.400	6.31	1.51		2	
trans-1,2-Dichloroethene	9	ND	0.400	ND	1.58		2	
trans-1,3-Dichloroproper	ne	ND	0.400	ND	1.81		2	
Trichloroethene		5.43	0.400	29.1	2.15		2	
Trichlorofluoromethane		42.9	0.400	241	2.24		2	
Vinyl acetate		1.23	0.400	4.32	1.41		2	
Vinyl bromide		ND	0.400	ND	1.75		2	
Vinyl chloride		ND	0.400	ND	1.02		2	

L0809833

07/11/08

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052

SAMPLE RESULTS

Date Collected:07/01/08 14:45Date Received:07/03/08Field Prep:Not Specified

Lab Number:

Report Date:

Lab ID:	L0809833-03
Client ID:	SV-3
Sample Location:	WAYLAND, MA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	07/10/08 01:41
Analyst:	AR

ParameterResultsRDLRDLResultsRDLQualifierPactorLow Level Volatile Organic Compounds in Air1,1,1-TrichloroethaneND0.400ND2.1821,1,2,2-TetrachloroethaneND0.400ND2.1821,1,2-TrichloroethaneND0.400ND1.6221,1-DichloroethaneND0.400ND1.6221,1-DichloroethaneND0.400ND1.6221,2-TrichloroethaneND0.400ND1.6221,2-TrichloroethaneND0.400ND1.6221,2-TrichloroethaneND0.400ND1.6221,2-TrichloroethaneND0.400ND1.6221,2-TrichloroethaneND0.400ND1.6221,2-DichloroethaneND0.400ND1.6221,2-DichloroethaneND0.400ND1.6221,2-DichloroethaneND0.400ND1.6221,2-DichloroethaneND0.400ND1.6221,3-DichloroethaneND0.400ND1.6221,3-DichloroethaneND0.400ND2.4021,3-DichloroethaneND0.400ND2.4021,3-DichloroethaneND0.400ND2.4021,3-DichloroethaneND0.400ND2.4021,3-Dichloroethane		ppbV	ppbV		5		Dilution
ND 0.400 ND 2.18 2 1.1.2.2-Tetrachloroethane ND 0.400 ND 2.74 2 1.1.2.2-Titchloroethane ND 0.400 ND 2.18 2 1.1.2-Titchloroethane ND 0.400 ND 2.18 2 1.1-Dichloroethane ND 0.400 ND 1.62 2 1.1-Dichloroethane ND 0.400 ND 1.62 2 1.2-Hirohoroethane ND 0.400 ND 1.62 2 1.2-Dichloroethane ND 0.400 ND 1.96 2 1.2-Dichloroethane ND 0.400 ND 3.07 2 1.2-Dichloroethane ND 0.400 ND 1.62 2 1.2-Dichloroethane ND 0.400 ND 1.62 2 1.2-Dichloroethane ND 0.400 ND 1.62 2 1.2-Dichloroethane ND 0.400 ND 2.40 2 <th>Parameter</th> <th>Results</th> <th>RDL</th> <th>Results</th> <th>RDL</th> <th>Qualifier</th> <th>Factor</th>	Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Inc Inc <thinc< th=""> <thinc< th=""> <thinc< th=""></thinc<></thinc<></thinc<>	Low Level Volatile Organic Compoun	ds in Air					
ND ND 0.400 ND 2.18 2 1.1.2-Trichloroethane ND 0.400 ND 1.62 2 1.1-Dichloroethane ND 0.400 ND 1.62 2 1.1-Dichloroethane ND 0.400 ND 1.62 2 1.2-A-Trichlorbenzene 1.00 0.400 ND 1.96 2 1.2.4-Trimethylbenzene ND 0.400 ND 3.07 2 1.2-Dichloroethane ND 0.400 ND 2.40 2 1.2-Dichloroethane ND 0.400 ND 1.62 2 1.2-Dichloroethane ND 0.400 ND 1.62 2 1.2-Dichloroethane ND 0.400 ND 1.62 2 1.3-Dichloroethane ND 0.400 ND 1.85 2 1.3-Butadiene ND 0.400 ND 2.40 2 1.4-Dichloroethane ND 0.400 ND 1.87 2 </td <td>1,1,1-Trichloroethane</td> <td>ND</td> <td>0.400</td> <td>ND</td> <td>2.18</td> <td></td> <td>2</td>	1,1,1-Trichloroethane	ND	0.400	ND	2.18		2
ND ND NO ND ND<	1,1,2,2-Tetrachloroethane	ND	0.400	ND	2.74		2
ND 0.400 ND 1.58 2 1,2,4-Trichlorbenzene 1.00 0.400 7.43 2.97 2 1,2,4-Triineltylbenzene ND 0.400 ND 1.96 2 1,2-Triineltylbenzene ND 0.400 ND 3.07 2 1,2-Dibromoethane ND 0.400 ND 3.07 2 1,2-Dichlorobenzene ND 0.400 ND 2.40 2 1,2-Dichlorobenzene ND 0.400 ND 1.62 2 1,2-Dichloroptopane ND 0.400 ND 1.85 2 1,3-Dichlorobenzene ND 0.400 ND 1.96 2 1,3-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 1.44 2 2,4-Trimethylpentane 2.9 0.400 ND 1.61 2<	1,1,2-Trichloroethane	ND	0.400	ND	2.18		2
1.00 0.400 7.43 2.97 2 1.2,4-Trichlorbenzene ND 0.400 ND 1.96 2 1,2.4-Trimethylbenzene ND 0.400 ND 3.07 2 1,2-Dibromoethane ND 0.400 ND 3.07 2 1,2-Dibromoethane ND 0.400 ND 2.40 2 1,2-Dichloroethane ND 0.400 ND 1.62 2 1,2-Dichloroethane ND 0.400 ND 1.62 2 1,3-Dichloropropane ND 0.400 ND 1.85 2 1,3-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 1.44 2 2,4-Trimethylpentane ND 0.400 ND 1.87 2 2-Hexanone 3.31 0.400 ND 1.86 2	1,1-Dichloroethane	ND	0.400	ND	1.62		2
International and a broad in the last International and a broad and a	1,1-Dichloroethene	ND	0.400	ND	1.58		2
ND 0.400 ND 3.07 2 1,2-Dichlorobenzene ND 0.400 ND 2.40 2 1,2-Dichlorobenzene ND 0.400 ND 1.62 2 1,2-Dichlorobenzene ND 0.400 ND 1.62 2 1,2-Dichloropropane ND 0.400 ND 1.85 2 1,3-Frimethybenzene ND 0.400 ND 1.96 2 1,3-Butadiene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 1.44 2 2,2,4-Trimethylpentane ND 0.400 ND 1.87 2 2-Butanone 22.9 0.400 ND 1.86 2 3-Chloropropene ND 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.96 2 <td< td=""><td>1,2,4-Trichlorbenzene</td><td>1.00</td><td>0.400</td><td>7.43</td><td>2.97</td><td></td><td>2</td></td<>	1,2,4-Trichlorbenzene	1.00	0.400	7.43	2.97		2
Inc I	1,2,4-Trimethylbenzene	ND	0.400	ND	1.96		2
1,2-Dichloroethane ND 0.400 ND 1.62 2 1,2-Dichloropropane ND 0.400 ND 1.85 2 1,3-Dichloropropane ND 0.400 ND 1.96 2 1,3-Frimethybenzene ND 0.400 ND 0.884 2 1,3-Butadiene ND 0.400 ND 2.40 2 1,3-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dickne ND 0.400 ND 1.44 2 2,2,4-Trimethylpentane ND 0.400 ND 1.87 2 2-Butanone 22.9 0.400 67.5 1.18 2 2-Hexanone 3.31 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.25 2 Acetone 177 1.00 419 2.37 2 Benzel chloride ND 0.400 ND 1.28 2 <td>1,2-Dibromoethane</td> <td>ND</td> <td>0.400</td> <td>ND</td> <td>3.07</td> <td></td> <td>2</td>	1,2-Dibromoethane	ND	0.400	ND	3.07		2
1,2-Dichloropropane ND 0.400 ND 1.85 2 1,3-5-Trimethybenzene ND 0.400 ND 1.96 2 1,3-Butadiene ND 0.400 ND 0.884 2 1,3-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 1.44 2 2,2,4-Trimethylpentane ND 0.400 ND 1.87 2 2-Butanone 22.9 0.400 67.5 1.18 2 2-Hexanone 3.31 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.25 2 Acetone 177 1.00 419 2.37 2 Benzene ND 0.400 ND 1.28 2 Benzene ND 0.400 ND 1.28 2	1,2-Dichlorobenzene	ND	0.400	ND	2.40		2
ND 0.400 ND 1.96 2 1,3.5-Trimethybenzene ND 0.400 ND 0.884 2 1,3-Butadiene ND 0.400 ND 0.884 2 1,3-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dickne ND 0.400 ND 1.44 2 2,2,4-Trimethylpentane ND 0.400 ND 1.87 2 2-Butanone 22.9 0.400 67.5 1.18 2 2-Hexanone 3.31 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.96 2 Acetone 177 1.00 419 2.37 2 Benzyl chloride ND 0.400 ND 1.28 2	1,2-Dichloroethane	ND	0.400	ND	1.62		2
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	1,2-Dichloropropane	ND	0.400	ND	1.85		2
1,3-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dichlorobenzene ND 0.400 ND 1.44 2 2,2,4-Trimethylpentane ND 0.400 ND 1.87 2 2-Butanone 22.9 0.400 67.5 1.18 2 2-Hexanone 3.31 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.25 2 Acetone 177 1.00 419 2.37 2 Benzyl chloride ND 0.400 ND 1.28 2	1,3,5-Trimethybenzene	ND	0.400	ND	1.96		2
1,4-Dichlorobenzene ND 0.400 ND 2.40 2 1,4-Dioxane ND 0.400 ND 1.44 2 2,2,4-Trimethylpentane ND 0.400 ND 1.87 2 2-Butanone 22.9 0.400 67.5 1.18 2 2-Hexanone 3.31 0.400 13.6 1.64 2 3-Chloropropene ND 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.96 2 Benzene ND 0.400 ND 1.28 2 Benzyl chloride ND 0.400 ND 1.28 2	1,3-Butadiene	ND	0.400	ND	0.884		2
ND 0.400 ND 1.44 2 1,4-Dioxane ND 0.400 ND 1.44 2 2,2,4-Trimethylpentane ND 0.400 ND 1.87 2 2-Butanone 22.9 0.400 67.5 1.18 2 2-Hexanone 3.31 0.400 13.6 1.64 2 3-Chloropropene ND 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.96 2 Acetone 177 1.00 419 2.37 2 Benzene ND 0.400 ND 1.28 2	1,3-Dichlorobenzene	ND	0.400	ND	2.40		2
2,2,4-Trimethylpentane ND 0.400 ND 1.87 2 2-Butanone 22.9 0.400 67.5 1.18 2 2-Hexanone 3.31 0.400 13.6 1.64 2 3-Chloropropene ND 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.96 2 Acetone 177 1.00 419 2.37 2 Benzene ND 0.400 ND 1.28 2	1,4-Dichlorobenzene	ND	0.400	ND	2.40		2
2-Butanone 22.9 0.400 67.5 1.18 2 2-Hexanone 3.31 0.400 13.6 1.64 2 3-Chloropropene ND 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.96 2 Acetone 177 1.00 419 2.37 2 Benzene ND 0.400 ND 1.28 2	1,4-Dioxane	ND	0.400	ND	1.44		2
2-Hexanone 3.31 0.400 13.6 1.64 2 3-Chloropropene ND 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.96 2 Acetone 177 1.00 419 2.37 2 Benzene ND 0.400 ND 1.28 2	2,2,4-Trimethylpentane	ND	0.400	ND	1.87		2
3-Chloropropene ND 0.400 ND 1.25 2 4-Ethyltoluene ND 0.400 ND 1.96 2 Acetone 177 1.00 419 2.37 2 Benzene ND 0.400 ND 1.28 2 Benzyl chloride ND 0.400 ND 2.07 2	2-Butanone	22.9	0.400	67.5	1.18		2
4-Ethyltoluene ND 0.400 ND 1.96 2 Acetone 177 1.00 419 2.37 2 Benzene ND 0.400 ND 1.28 2 Benzyl chloride ND 0.400 ND 2.07 2	2-Hexanone	3.31	0.400	13.6	1.64		2
Acetone 177 1.00 419 2.37 2 Benzene ND 0.400 ND 1.28 2 Benzyl chloride ND 0.400 ND 2.07 2	3-Chloropropene	ND	0.400	ND	1.25		2
Benzene ND 0.400 ND 1.28 2 Benzyl chloride ND 0.400 ND 2.07 2	4-Ethyltoluene	ND	0.400	ND	1.96		2
Benzyl chloride ND 0.400 ND 2.07 2	Acetone	177	1.00	419	2.37		2
	Benzene	ND	0.400	ND	1.28		2
Bromodichloromethane ND 0.400 ND 2.68 2	Benzyl chloride	ND	0.400	ND	2.07		2
	Bromodichloromethane	ND	0.400	ND	2.68		2

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052

07110813:05 Lab Number: L0809833

07/11/08

Report Date:

Lab ID: Client ID: Sample Location:	L0809833-03 SV-3 WAYLAND, MA				Date Field	Collected: Received: Prep:	07/01/08 07/03/08 Not Speci
Parameter		ppbV Results	RDL	ug/m3 Results	B RDL	Qualifier	Dilution Factor
	Organic Compounds		NDE	neouno		quainer	
Bromoform	5	ND	0.400	ND	4.13		2
Bromomethane		ND	0.400	ND	1.55		2
Carbon disulfide		ND	0.400	ND	1.24		2
Carbon tetrachloride		ND	0.400	ND	2.51		2
Chlorobenzene		ND	0.400	ND	1.84		2
Chloroethane		ND	0.400	ND	1.05		2
Chloroform		ND	0.400	ND	1.95		2
Chloromethane		ND	0.400	ND	0.825		2
cis-1,2-Dichloroethene		ND	0.400	ND	1.58		2
cis-1,3-Dichloropropene		ND	0.400	ND	1.81		2
Cyclohexane		ND	0.400	ND	1.38		2
Dibromochloromethane		ND	0.400	ND	3.40		2
Dichlorodifluoromethane	9	0.492	0.400	2.43	1.98		2
Ethanol		12.4	5.00	23.4	9.41		2
Ethyl Acetate		ND	1.00	ND	3.60		2
Ethylbenzene		ND	0.400	ND	1.74		2
Freon-113		ND	0.400	ND	3.06		2
Freon-114		ND	0.400	ND	2.79		2
Hexachlorobutadiene		ND	0.400	ND	4.26		2
Isopropanol		7.23	1.00	17.8	2.46		2
Methylene chloride		1.30	1.00	4.51	3.47		2
4-Methyl-2-pentanone		ND	0.400	ND	1.64		2
Methyl tert butyl ether		ND	0.400	ND	1.44		2
p/m-Xylene		ND	0.800	ND	3.47		2
o-Xylene		ND	0.400	ND	1.74		2
Heptane		0.438	0.400	1.80	1.64		2
n-Hexane		2.41	0.400	8.49	1.41		2
Propylene		1.96	0.400	3.37	0.688		2

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052 07110813:05

Lab Number: L0809833 **Report Date:**

07/11/08

Lab ID: Client ID: Sample Location:	L0809833-03 SV-3 WAYLAND, MA				Date	Collected: Received: Prep:	07/01/0 07/03/0 Not Sp	
		ppbV	1	ug/m3	<u>; </u>		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	_
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	0.400	ND	1.70		2	
Tetrachloroethene		2.02	0.400	13.7	2.71		2	
Tetrahydrofuran		ND	0.400	ND	1.18		2	
Toluene		1.03	0.400	3.87	1.51		2	
trans-1,2-Dichloroethene	9	ND	0.400	ND	1.58		2	
trans-1,3-Dichloroproper	ne	ND	0.400	ND	1.81		2	
Trichloroethene		1.72	0.400	9.24	2.15		2	
Trichlorofluoromethane		26.6	0.400	149	2.24		2	
Vinyl acetate		2.10	0.400	7.39	1.41		2	
Vinyl bromide		ND	0.400	ND	1.75		2	
Vinyl chloride		ND	0.400	ND	1.02		2	

Project Number: 12069-052

Lab Number: L0809833 Report Date: 07/11/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/09/08 12:53

	ppbV		u	g/m3		Dilution
Parameter	Results	RDL	Result	ts RDL	Qualifier	Factor
Low Level Volatile Organic Compound	ds in Air for sa	mple(s):	01-03 Batch	WG328542-3		
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorbenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	ND	0.200	ND	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	ND	0.200	ND	0.589		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	ND	0.500	ND	1.19		1
Benzene	ND	0.200	ND	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Report Date:

Lab Number: L0809833 Report Date: 07/11/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/09/08 12:53

	ppbV			ug/m	3		Dilution
Parameter	Results	RDL		Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for s	ample(s):	01-03	Batch: V	/G328542-3		
Bromoform	ND	0.200		ND	2.06		1
Bromomethane	ND	0.200		ND	0.776		1
Carbon disulfide	ND	0.200		ND	0.622		1
Carbon tetrachloride	ND	0.200		ND	1.26		1
Chlorobenzene	ND	0.200		ND	0.920		1
Chloroethane	ND	0.200		ND	0.527		1
Chloroform	ND	0.200		ND	0.976		1
Chloromethane	ND	0.200		ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200		ND	0.907		1
Cyclohexane	ND	0.200		ND	0.688		1
Dibromochloromethane	ND	0.200		ND	1.70		1
Dichlorodifluoromethane	ND	0.200		ND	0.988		1
Ethanol	ND	2.50		ND	4.71		1
Ethyl Acetate	ND	0.500		ND	1.80		1
Ethylbenzene	ND	0.200		ND	0.868		1
Freon-113	ND	0.200		ND	1.53		1
Freon-114	ND	0.200		ND	1.40		1
Hexachlorobutadiene	ND	0.200		ND	2.13		1
Isopropanol	ND	0.500		ND	1.23		1
Methylene chloride	ND	0.500		ND	1.74		1
4-Methyl-2-pentanone	ND	0.200		ND	0.819		1
Methyl tert butyl ether	ND	0.200		ND	0.720		1
p/m-Xylene	ND	0.400		ND	1.74		1
o-Xylene	ND	0.200		ND	0.868		1

Project Number: 12069-052

Lab Number: L0809833 Report Date: 07/11/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/09/08 12:53

ppbV		ug/	m3		Dilution	
Results	RDL		Results	RDL	Qualifier	Factor
in Air for	sample(s):	01-03	Batch:	WG328542-3		
ND	0.200		ND	0.819		1
ND	0.200		ND	0.704		1
ND	0.200		ND	0.344		1
ND	0.200		ND	0.851		1
ND	0.200		ND	1.36		1
ND	0.200		ND	0.589		1
ND	0.200		ND	0.753		1
ND	0.200		ND	0.792		1
ND	0.200		ND	0.907		1
ND	0.200		ND	1.07		1
ND	0.200		ND	1.12		1
ND	0.200		ND	0.704		1
ND	0.200		ND	0.874		1
ND	0.200		ND	0.511		1
	Results in Air for ND ND ND ND ND ND ND ND ND ND ND ND ND	Results RDL ND 0.200 ND 0.200	Results RDL in Air for sample(s): 01-03 ND 0.200 ND 0.200	Results RDL Results in Air for sample(s): 01-03 Batch: ND 0.200 ND ND 0.200 ND	Results RDL Results RDL in Air for sample(s): 01-03 Batch: WG328542-3 ND 0.200 ND 0.819 ND 0.200 ND 0.704 ND 0.200 ND 0.704 ND 0.200 ND 0.344 ND 0.200 ND 0.851 ND 0.200 ND 0.851 ND 0.200 ND 0.589 ND 0.200 ND 0.753 ND 0.200 ND 0.792 ND 0.200 ND 0.907 ND 0.200 ND 1.07 ND 0.200 ND 1.07 ND 0.200 ND 1.12 ND 0.200 ND 0.704 ND 0.200 ND 0.704 ND 0.200 ND 0.704	Results RDL Results RDL Qualifier in Air for sample(s): 01-03 Batch: WG328542-3 WG328542-3 ND 0.200 ND 0.819 VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052

 Lab Number:
 L0809833

 Report Date:
 07/11/08

Parameter	LCS %Recovery	LCSE %Recov		RPD	RPD Limits
Low Level Volatile Organic Compounds in Air	Associated sample(s):	01-03 Ba	atch: WG328542-2		
1,1,1-Trichloroethane	109	-	70-130	-	
1,1,2,2-Tetrachloroethane	123	-	70-130	-	
1,1,2-Trichloroethane	116	-	70-130	-	
1,1-Dichloroethane	112	-	70-130	-	
1,1-Dichloroethene	99	-	70-130	-	
1,2,4-Trichlorobenzene	111	-	70-130	-	
1,2,4-Trimethylbenzene	123	-	70-130	-	
1,2-Dibromoethane	106	-	70-130	-	
1,2-Dichlorobenzene	120	-	70-130	-	
1,2-Dichloroethane	118	-	70-130	-	
1,2-Dichloropropane	122	-	70-130	-	
1,3,5-Trimethylbenzene	121	-	70-130	-	
1,3-Butadiene	101	-	70-130	-	
1,3-Dichlorobenzene	120	-	70-130	-	
1,4-Dichlorobenzene	122	-	70-130	-	
1,4-Dioxane	108	-	70-130	-	
2,2,4-Trimethylpentane	124	-	70-130	-	
2-Butanone	106	-	70-130	-	
2-Hexanone	117	-	70-130	-	
3-Chloropropene	114	-	70-130	-	
4-Ethyltoluene	120	-	70-130	-	

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052

 Lab Number:
 L0809833

 Report Date:
 07/11/08

arameter	LCS %Recovery		SD covery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s):	01-03	Batch:	WG328542-2		
Acetone	116		-	70-130	-	
Benzene	111		-	70-130	-	
Benzyl chloride	122		-	70-130	-	
Bromodichloromethane	117		-	70-130	-	
Bromoform	112		-	70-130	-	
Bromomethane	86		-	70-130	-	
Carbon disulfide	96		-	70-130	-	
Carbon tetrachloride	104		-	70-130	-	
Chlorobenzene	111		-	70-130	-	
Chloroethane	100		-	70-130	-	
Chloroform	112		-	70-130	-	
Chloromethane	97		-	70-130	-	
cis-1,2-Dichloroethene	113		-	70-130	-	
cis-1,3-Dichloropropene	111		-	70-130	-	
Cyclohexane	103		-	70-130	-	
Dibromochloromethane	109		-	70-130	-	
Dichlorodifluoromethane	96		-	70-130	-	
Ethyl Alcohol	119		-	70-130	-	
Ethyl Acetate	125		-	70-130	-	
Ethylbenzene	124		-	70-130	-	
1,1,2-Trichloro-1,2,2-Trifluoroethane	99		-	70-130	-	

Project Name: PROPOSED WAYLAND TEAM CENTER

Project Number: 12069-052

 Lab Number:
 L0809833

 Report Date:
 07/11/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s):	01-03 Batch: W	G328542-2		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	98	-	70-130	-	
Hexachlorobutadiene	98	-	70-130	-	
iso-Propyl Alcohol	114	-	70-130	-	
Methylene chloride	102	-	70-130	-	
4-Methyl-2-pentanone	118	-	70-130	-	
Methyl tert butyl ether	116	-	70-130	-	
p/m-Xylene	124	-	70-130	-	
o-Xylene	125	-	70-130	-	
Heptane	119	-	70-130	-	
n-Hexane	102	-	70-130	-	
Propylene	99	-	70-130	-	
Styrene	120	-	70-130	-	
Tetrachloroethene	106	-	70-130	-	
Tetrahydrofuran	115	-	70-130	-	
Toluene	117	-	70-130	-	
trans-1,2-Dichloroethene	101	-	70-130	-	
trans-1,3-Dichloropropene	104	-	70-130	-	
Trichloroethene	110	-	70-130	-	
Trichlorofluoromethane	96	-	70-130	-	
Vinyl acetate	140	-	70-130	-	
Vinyl bromide	98	-	70-130	-	

Lab Control Sample Analysis

Project Name:	PROPOSED WAYLAND TEAM CENTER	Batch Quality Control	Lab Number:	L0809833
Project Number:	12069-052		Report Date:	07/11/08

<u>Pa</u>	rameter	LCS %Recovery		CSD covery	%Recovery Limits	RPD	RPD Limits
Lo	w Level Volatile Organic Compounds in Air	Associated sample(s):	01-03	Batch:	WG328542-2		
	Vinyl chloride	98		-	70-130	-	
	Naphthalene	106		-	70-130	-	

Project Name:PROPOSED WAYLAND TEAM CENTERProject Number:12069-052

Lab Number: Report Date:

ber:L0809833ate:07/11/08

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
w Level Volatile Organic Compounds in Air	Associated sample(s): 01-03	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: SV-2
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
1,2,4-Trichlorbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
1,3,5-Trimethybenzene	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
2-Butanone	19.8	17.4	ppbV	13	25
2-Hexanone	2.69	2.72	ppbV	1	25

Project Name:PROPOSED WAYLAND TEAM CENTERProject Number:12069-052

Lab Number: Report Date:

ber:L0809833ate:07/11/08

rameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
w Level Volatile Organic Compounds in Air	Associated sample(s): 01-03	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: SV-2
3-Chloropropene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
Acetone	213	182	ppbV	16	25
Benzene	ND	ND	ppbV	NC	25
Benzyl chloride	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Carbon disulfide	0.515	0.497	ppbV	4	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Chloroform	1.12	1.09	ppbV	3	25
Chloromethane	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
Dichlorodifluoromethane	0.486	0.481	ppbV	1	25

Project Name:PROPOSED WAYLAND TEAM CENTERProject Number:12069-052

Lab Number: Report Date:

ber:L0809833ate:07/11/08

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
w Level Volatile Organic Compounds in Air	Associated sample(s): 01-03	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: SV-2
Ethanol	16.8	15.9	ppbV	6	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
Freon-113	ND	ND	ppbV	NC	25
Freon-114	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
Isopropanol	17.0	16.5	ppbV	3	25
Methylene chloride	1.31	1.30	ppbV	1	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
p/m-Xylene	0.898	0.861	ppbV	4	25
o-Xylene	ND	ND	ppbV	NC	25
Heptane	ND	0.404	ppbV	NC	25
n-Hexane	2.30	2.26	ppbV	2	25
Propylene	2.18	2.10	ppbV	4	25
Styrene	ND	ND	ppbV	NC	25
Tetrachloroethene	4.41	4.49	ppbV	2	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
Toluene	1.68	1.70	ppbV	1	25

Project Name:PROPOSED WAYLAND TEAM CENTERProject Number:12069-052

 Lab Number:
 L0809833

 Report Date:
 07/11/08

Parameter Native Sample **Duplicate Sample** Units RPD **RPD Limits** Low Level Volatile Organic Compounds in Air Associated sample(s): 01-03 QC Sample: L0809833-02 Client ID: SV-2 QC Batch ID: WG328542-4 ND NC trans-1,2-Dichloroethene ND ppbV 25 ppbV trans-1,3-Dichloropropene ND ND NC 25 Trichloroethene 5.43 5.41 ppbV 0 25 Trichlorofluoromethane 42.9 42.2 ppbV 2 25 Vinyl acetate 1.23 1.10 ppbV 11 25 Vinyl bromide 25 ND ND ppbV NC Vinyl chloride ND 25 ND ppbV NC

			07110813:05
Project Name:	PROPOSED WAYLAND TEAM CENTER	Lab Number:	L0809833
Project Number:	12069-052	Report Date:	07/11/08
	SAMPLE RESULTS		
Lab ID:	L0809833-02	Date Collected:	07/01/08 14:00
Client ID:	SV-2	Date Received:	07/03/08
Sample Location:	WAYLAND, MA	Field Prep:	Not Specified
Matrix:	Soil_Vapor	Extraction Method:	
Anaytical Method:	51,3C(M)		
Analytical Date:	07/10/08 11:05		
Analyst:	RY		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Fixed Gases by GC					
Helium	0.085		%	0.018	1.77

Project Name:	PROPOSED WAYLAND TEAM CENTER	Lab Number:	L0809833
Project Number:	12069-052	Report Date:	07/11/08
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	51,3C(M)
Analytical Date:	07/10/08 10:53
Analyst:	RY

Parameter	Result	Qualifier	Units	RDL
Fixed Gases by GC for sample(s):	02 Batch:	WG328549-2	2	
Helium	ND		%	0.010

Lab Control Sample Analysis

Project Name:	PROPOSED WAYLAND TEAM CENTER	Batch Quality Control	Lab Number:	L0809833
Project Number:	12069-052		Report Date:	07/11/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Fixed Gases by GC Associated sample(s):	02 Batch: WG328549-1				
Helium	80	-	80-120	-	

5

Project Name: Project Number:	PROPOSED WAYLAN 12069-052		ab Duplicate Analy. Batch Quality Control	sis	Lab Number: Report Date:	E0009033
Parameter		Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Fixed Gases by GC Ass	ociated sample(s): 02	QC Batch ID: WG328549-3	QC Sample: L0809833-02	2 Client ID: SV-2	2	

0.085

0.085

%

0

Helium

Project Name: PROPOSED WAYLAND TEAM CENTER

Report Date: 07/11/08

Project Number: 12069-052

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L0809833-01	SV-1	0103	#16 SV		-	-	39	36	8
L0809833-01	SV-1	381	2.7L Can	L0809159-01	-29.3	-2.3	-	-	-
L0809833-02	SV-2	0169	#30 SV		-	-	38	39	3
L0809833-02	SV-2	257	2.7L Can	L0809159-01	-29.4	-2.5	-	-	-
L0809833-03	SV-3	139	2.7L Can	L0809159-01	-29.3	-0.5	-	-	-

Project Name:PROPOSED WAYLAND TEAM CENTERProject Number:12069-052

Lab Number: L0809833 Report Date: 07/11/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
NA	Absent

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0809833-01A	Canister - 2.7 Liter	NA	NA	NA	NA	Absent	-
L0809833-02A	Canister - 2.7 Liter	NA	NA	NA	NA	Absent	FIXGAS-HE,TO15-LL
L0809833-03A	Canister - 2.7 Liter	NA	NA	NA	NA	Absent	-

 Lab Number:
 L0809833

 Report Date:
 07/11/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0809833

 Report Date:
 07/11/08

REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 51 Determination of Carbon Dioxide, Methane, Nitrogen and Oxygen from Stationary Sources. Method 3C. Appendix A, Part 60, 40 CFR (Code of Federal Regulations). June 20, 1996.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Į		00:21	7/3/08	din Burg	5-	2/200		HANT	K			ſ
Pa		à A	7/2/05	N N N Y	C 14:2 7-1					-eb-08)	Form No: 101-02 (rev.1-Feb-08)	7
ane	Terms and Conditions.	5:07	<u>المحرار</u>		s iso	214	- U	Net 2	no (no			
34	submitted are subject to Alpha's	1630	して	ps for Citral claws	1630	30/1/1	Heft	XIIV	80)			
of	clock will not start until any ambi-	Date/Time:		Received By:	Date/Time	Da		Relinqujshed By:)			
34	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time			Container Type			loor/Outdoor ill Gas/SVE	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify		*SAMPLE MATRIX CODES	*SAMPL	
L		-		/								
L						/	1					
								/				1
[
L								/		1		-
_			, <u>z-1</u> χ	CT " 139 002.	10	ъ Х	1445	u 1323	·	SV-3	-02	
£	Ram uf the Trace		69 X	DRW " 257 0169	14	- 22,	o jyuo	11 1230		SV-2	20-	1
				Den 272 381 0103	2	-35	3 120	7-1-05 1043		SV-1	9833-01	0
<u> </u>	Sample Comments (i.e. PID)	APH FIXEL	1D - Flow	Sample Sampler's Can ID ID- Matrix* Initials Size Can Cont	Final Vacuum	Start Time End Time Vacuum	Time End Time V	Date Start Ti	Sample ID	Sam	ALPHA Lab ID (Lab Use Only)	
	770.70	S SIM	A by TO.	Filled Out	Below Must Be F	х Ми	Belo	Columns	AII C			I
			15					nents:	rements/Comr	Other Project Specific Requirements/Comments:	Other Project :	
						Time:	-	Date Due:	ahalyzed by Alpha	revio		
	YSIS	ANALYSIS			approved!}	RUSH (only confirmed if pre-approved!) //		10 DAYS	Haber ald nch, un	Le Blanc O Had	Email: K. Col	m
											Fax:	
				Report to: (if different than Project Manager)			Time	Turn-Around Time	8	017-038-710	Phone: 617	T
0	State/Fed Program Criteria	State/Fed		Additional Deliverables:		Danc	th. LeSland	ALPHA Quote #:	<i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> ,	And Izra	Rister	
		Dogulatory	ndicated)	(Default based on Regulatory Criteria Indicated) Other Formats:		2052	12069-052	Project #: / 2) L			71108
				ADEx Criteria Checker:		ard he	Wayla	Project Location: Wingle		lon	Client Information	
	lient info PO #:	Same as Client info		-D FAX	Cam Cander	Jayland	anid (Project Name: Project	-3288	TEL: 508-822-9300 FAX: 508-822-3288	EL: 508-822-930	
	rmation	Billing Information	verables	Report Information - Data Deliverables			nation	Project Information	field MA 02048	ans	20 Forhes Blvd Ma	
	ALPHA Job #: 60809833	ALPHA Joi		Date Rec'd in Lab:		PAGE		AIR ANALYSIS	AIR AI			
											N.N. adv	7

Approx CHAIN OF CHILD Project Information Project Information Project Information Child Induction Child Induction <thchild induction<="" th=""> Child Induction <t< th=""><th>Submitted are subject to Alpha's Terms and Conditions.</th><th>1020</th><th></th><th>CRAWFO</th><th></th><th>and and</th><th>1630 K</th><th>11/1/10E</th><th></th><th></th><th></th><th></th><th>6-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0</th><th>Form No: 101-02 (rev.1-Feb-08)</th><th>Form</th></t<></thchild>	Submitted are subject to Alpha's Terms and Conditions.	1020		CRAWFO		and and	1630 K	11/1/10E					6-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	Form No: 101-02 (rev.1-Feb-08)	Form
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ite/Time:		iner Type	Contai Received E		s/Time	Dat	n/Outdoor) Gas/SVE	nt Air (Indoo por/Landfill) e Specify shout By:	A = Ambier V = Soil Va ther = Please Relinqui		EMATRIX	*SAMPL	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
Arrive Side Control Chan OF Custory Freiget Information Project Information Report Information Report Information Report Information Difference Bud Manefield MA 02048 Project Information Project Information Report Information Report Information Date Revit Information Report Information Date Revit Information D										\bigwedge					
Apple A CHAIN OF CUSTODY Project Information Project Information Report Information Report Information 05 Forbes Bivd, Mansfield, MA 02048 Project Name Project Name Project Information Report Information Report Information Christian 16mt Mormation Fraget Name Project Name Pr															
Apprix CHAIN OF CUSTOPY Project Information Project Information Report Information - Data Deliverables Der formes Blvd, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables Internationmetion France Project Name Project Name Project Name Project Name Internation France Project Name Project Name <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>													1		
$ \begin{array}{ c c c c c c c c } \hline \text{Project Information} & \text{Project Information} & \text{Project Information} & \text{Report Information} & \text$				[1	0	10	ý	1445	1523	4		SV-3	-0-	
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1			-		Ci	1	- 22'	iyw	1230	:		SV-2	20-	
ALPHA CHAIN OF CUSTODY Project Information Project Information Report Information Report Information Report Information Date Rec'd in Lab: 20 Forbes Bvd, Mansfield, MA 02048 Project Name: Project Name: Project Name: Report Information Criteria Checker: Criteria Checke	1			381	Per 27	0					7-1-05	nano de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra d	SV-1	33-01	80
APPENDIX CHAIN OF CUSTODY Project Information Report Information Report Information 20 Forbes Bivd, Mansfield, MA 02048 Project Information Project Information Report Information Report Information - Data Deliverables 20 Forbes Bivd, Mansfield, MA 02048 Project Name: Project Name: Project Information Report Information - Data Deliverables 20 Forbes Bivd, Mansfield, MA 02048 Project Name: Project Name: Project Information Report Information - Data Deliverables 20 Forbes Bivd, Mansfield, MA 02048 Project Name: Project Name: Maryle, Clandard Maryle, Clandard Project Information Report Information - Data Deliverables 20 Forbes Bivd, Mansfield, MA 02048 Project Name: Maryle, Clandard Project Manager: K, Le Blanc Criteria Checker: Other Formats: Comments: Compared Maryle, Clandard pdf report Criteria Indicated 20 Forbes Bivd, Le Blanc C, Haluyall ncL, comment Biverables Standard Rule Numeral Beliverables: Report Id: or othereal based on Regulatory Criteria Indicated 21 These samples have been previously analyzed by Alpha Date Due: Time:	10.2	APH FIXED	TO-14A by	I D Can		Sample Sa Matrix* Ir	St Be Final Vacuum	א Mu זכה Initial ∍ Vacuum	Belov	ls'U	olun Date	} ∎	Q	.PHA Lab ID ab Use Only)	<u>(</u> , ≥
APPER CHAIN OF CUSTODY Project Information Project Information Report Information - Data Deliverables 20 Forbes Bird, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables 20 Forbes Bird, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables 20 Forbes Bird, Mansfield, MA 02048 Project Name: Project Name: Project Information 11ent: Information Project Name: Project Location: Way for A 11ent: Information Project Namager: Mansfield, MA Confueria Indicated on Regulatory Citieria Indicated on Segulatory Citieria Ind			TO.15								nents:	quirements/Comr	pecific Rec	her Project S	Q
LTFA CHAIN OF CUSTODY Project Information PAGEOF Date Rec'd in Lab: bess Blvd, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables bess Blvd, Mansfield, MA 02048 Project Name: Project Mame: Project Manuel Wayled Wayled Wayled Contention Report Information - Data Deliverables bess Blvd, Mansfield, MA 02048 Project Name: Project Name: Project Manuel Wayled Wayled Wayled Wayled Contention - Data Deliverables bess Blvd, Mansfield, MA 02048 Project Name: Project Location: Wayled Wayled Wayled Wayled Contention - Data Deliverables bess Blvd, Mansfield, MA 02048 Project Location: Wayled Wayled Wayled Wayled Contention - Data Deliverables bess Blvd, Mansfield, MA 02048 Project Manager: K, Le Sland Criteria Checker: Deliant Based on Regulatory Contentia Indicated Other Formats: Deliant Based on Regulatory Contentia Indicated Other Formats: Demail Canaded Deliverables: EMAIL (standard pdf report) bess Blvd, Market Mansger Distent time Distent time Report to: (if different than Project Manager)		ANA						Time:	145	Ч		July ald rch, con	Ve been previou	These samples ha	
Price CHAIN OF CUSTODY Project Information Project Information Report Information - Data Deliverables bes Blvd, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables bes Blvd, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables bes Blvd, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables bes Blvd, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables bes Blvd, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables Information Project Information: Project Information: Project Part Deliverables If $AUL_{1} < f(A) < f(A) $							proved!}	' confirmed if pre-au	1 RUSH (only		- 🗆 Standa				Fax
Figure 1 CHAIN OF CUSTODY Project Information Project Information Report Information - Data Deliverables bes Blvd, Mansfield, MA 02048 Project Information Project Information Report Information - Data Deliverables $B-822-9300$ FAX: 508-822-3288 Project Name: Project Mame: Project Location: $Way and Way an$	-			^y roject Manager)	(if different than P	Report to:			ne	round Tir	Turn-A	400	-886-7		Pho
Price CHAIN OF CUSTODY Project Information Project Information Report Information - Data Deliverables bes Blvd, Mansfield, MA 02048 Project Information Report Information - Data Deliverables be-822-9300 FAX: 508-822-3288 Project Name: $pryskl Wayland Tanlard Tanlard Condended Report Information - Data Deliverables Information Froject Location: Wayland Wayland Tanlard Condended Citeria Checker: Criteria Checker: Information Project #: 12069-057 Other Formats: Other Formats: $	2	Regulato State/Fed		odf report) ibles:	- (standard p nal Delivera	EMAIL Additio		lanc	Kles	Anager: Quote #:	Project N ALPHA (Jr.	Med Ford		Addr
CHAIN OF CUSTODY Project Information Report Information - Data Deliverables Sfield, MA 02048 Project Information Report Information - Data Deliverables FAX: 508-822-3288 Project Name: Imposed Ungled Tem (and Tem (and Tem (and Tem Conteria Checker: Date Rec'd in Lab:			a Indicated)	Regulatory Criteric	vfault based on f er Formats:	(De Othe		2	369-0	120	Project #		Holn ch, I	-	Clie
STODY Project Information Project Information Report Information - Data Deliverables Project Name: Proved Index (and part of FAX	1 1			п 	eria Checker	ADEx Crite		l'	Varland	ocation:	Project L		on	ent Informatio	Clie
CHAIN OF CUSTODY		Billing In	liverables	n - Data De	nformatio	Report I	can land	1	ion	Informat lame: Prav	Project N	02048 822-3288	lansfield, MA) FAX: 508-8	Forbes Blvd, N : 508-822-930(320
		ALPHA J			'd in Lab:	Date Rec	ଜ 	PAGE			ŕ	OF CUSTODY		ALPHA	

ANALYTICAL REPORT

L0809956
Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
Kate Leblanc
WAYLAND TOWN CENTER
12069-052
07/11/08

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

 Lab Number:
 L0809956

 Report Date:
 07/11/08

Alpha Sample ID	Client ID	Sample Location
L0809956-01	SV-4	WAYLAND, MA
L0809956-02	SV-5	WAYLAND, MA

 Lab Number:
 L0809956

 Report Date:
 07/11/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

TO-15

L0809956-01 and -02 have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

The WG328542-2 LCS recovery for Vinyl Acetate is outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kathle M. Marin

Title: Technical Director/Representative

Date: 07/11/08

AIR

07110813:07

Project Name:	WAYLAND TOWN CENTER
Project Number:	12069-052

Lab Number: L0809956

Report Date:

Date Collected:

Date Received:

Field Prep:

07/11/08

07/02/08 10:45

Not Specified

07/03/08

	ppbV		ug/m3	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compou	unds in Air					
1,1,1-Trichloroethane	ND	0.400	ND	2.18		2
1,1,2,2-Tetrachloroethane	ND	0.400	ND	2.74		2
1,1,2-Trichloroethane	ND	0.400	ND	2.18		2
1,1-Dichloroethane	ND	0.400	ND	1.62		2
1,1-Dichloroethene	ND	0.400	ND	1.58		2
1,2,4-Trichlorbenzene	ND	0.400	ND	2.97		2
1,2,4-Trimethylbenzene	ND	0.400	ND	1.96		2
1,2-Dibromoethane	ND	0.400	ND	3.07		2
1,2-Dichlorobenzene	ND	0.400	ND	2.40		2
1,2-Dichloroethane	ND	0.400	ND	1.62		2
1,2-Dichloropropane	ND	0.400	ND	1.85		2
1,3,5-Trimethybenzene	ND	0.400	ND	1.96		2
1,3-Butadiene	ND	0.400	ND	0.884		2
1,3-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dioxane	ND	0.400	ND	1.44		2
2,2,4-Trimethylpentane	ND	0.400	ND	1.87		2
2-Butanone	13.3	0.400	39.1	1.18		2
2-Hexanone	2.49	0.400	10.2	1.64		2
3-Chloropropene	ND	0.400	ND	1.25		2
4-Ethyltoluene	ND	0.400	ND	1.96		2
Acetone	158	1.00	374	2.37		2
Benzene	0.488	0.400	1.56	1.28		2
Benzyl chloride	ND	0.400	ND	2.07		2
Bromodichloromethane	ND	0.400	ND	2.68		2

07110813:07

07/11/08

Lab Number: L0809956

Report Date:

Lab ID: Client ID: Sample Location:	L0809956-01 SV-4 WAYLAND, MA				Date	Collected: Received: Prep:	07/02/08 07/03/08 Not Spec
		ppbV		ug/m3			Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile	Organic Compounds	in Air					
Bromoform		ND	0.400	ND	4.13		2
Bromomethane		ND	0.400	ND	1.55		2
Carbon disulfide		ND	0.400	ND	1.24		2
Carbon tetrachloride		ND	0.400	ND	2.51		2
Chlorobenzene		ND	0.400	ND	1.84		2
Chloroethane		ND	0.400	ND	1.05		2
Chloroform		ND	0.400	ND	1.95		2
Chloromethane		ND	0.400	ND	0.825		2
cis-1,2-Dichloroethene		ND	0.400	ND	1.58		2
cis-1,3-Dichloropropene		ND	0.400	ND	1.81		2
Cyclohexane		ND	0.400	ND	1.38		2
Dibromochloromethane		ND	0.400	ND	3.40		2
Dichlorodifluoromethane	9	0.483	0.400	2.39	1.98		2
Ethanol		8.96	5.00	16.9	9.41		2
Ethyl Acetate		ND	1.00	ND	3.60		2
Ethylbenzene		ND	0.400	ND	1.74		2
Freon-113		ND	0.400	ND	3.06		2
Freon-114		ND	0.400	ND	2.79		2
Hexachlorobutadiene		ND	0.400	ND	4.26		2
Isopropanol		13.1	1.00	32.3	2.46		2
Methylene chloride		1.26	1.00	4.38	3.47		2
4-Methyl-2-pentanone		ND	0.400	ND	1.64		2
Methyl tert butyl ether		ND	0.400	ND	1.44		2
p/m-Xylene		ND	0.800	ND	3.47		2
o-Xylene		ND	0.400	ND	1.74		2
Heptane		0.636	0.400	2.60	1.64		2
n-Hexane		1.76	0.400	6.21	1.41		2
Propylene		1.32	0.400	2.26	0.688		2

07110813:07

Project Name:WAYLAND TOWN CENTERProject Number:12069-052

Lab Number: L0809956

Report Date:

07/11/08

Lab ID: Client ID: Sample Location:	L0809956-01 SV-4 WAYLAND, MA				Date Collected: Date Received: Field Prep:		07/02/0 07/03/0 Not Sp	
D		ppbV		ug/m3 Results	RDL	Qualifier	Dilution Factor	
Parameter		Results	RDL	Results	RDL	Qualifier		-
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	0.400	ND	1.70		2	
Tetrachloroethene		ND	0.400	ND	2.71		2	
Tetrahydrofuran		ND	0.400	ND	1.18		2	
Toluene		0.960	0.400	3.61	1.51		2	
trans-1,2-Dichloroethene	9	ND	0.400	ND	1.58		2	
trans-1,3-Dichloroproper	ne	ND	0.400	ND	1.81		2	
Trichloroethene		1.10	0.400	5.90	2.15		2	
Trichlorofluoromethane		15.3	0.400	86.0	2.24		2	
Vinyl acetate		0.657	0.400	2.31	1.41		2	
Vinyl bromide		ND	0.400	ND	1.75		2	
Vinyl chloride		ND	0.400	ND	1.02		2	

07110813:07

07/11/08

Project Name:	WAYLAND TOWN CENTER
Project Number:	12069-052

Lab Number: L0809956

Report Date:

Date Collected:

Date Received:

Field Prep:

07/03/08

07/02/08 11:10

Not Specified

L0809956-02
SV-5
WAYLAND, MA
Soil_Vapor
48,TO-15
07/10/08 02:56
AR

	ppbV	,	ug/m3	ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Comp	oounds in Air					
1,1,1-Trichloroethane	ND	0.400	ND	2.18		2
1,1,2,2-Tetrachloroethane	ND	0.400	ND	2.74		2
1,1,2-Trichloroethane	ND	0.400	ND	2.18		2
1,1-Dichloroethane	ND	0.400	ND	1.62		2
1,1-Dichloroethene	ND	0.400	ND	1.58		2
1,2,4-Trichlorbenzene	ND	0.400	ND	2.97		2
1,2,4-Trimethylbenzene	ND	0.400	ND	1.96		2
1,2-Dibromoethane	ND	0.400	ND	3.07		2
1,2-Dichlorobenzene	ND	0.400	ND	2.40		2
1,2-Dichloroethane	ND	0.400	ND	1.62		2
1,2-Dichloropropane	ND	0.400	ND	1.85		2
1,3,5-Trimethybenzene	ND	0.400	ND	1.96		2
1,3-Butadiene	ND	0.400	ND	0.884		2
1,3-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dioxane	ND	0.400	ND	1.44		2
2,2,4-Trimethylpentane	ND	0.400	ND	1.87		2
2-Butanone	18.4	0.400	54.2	1.18		2
2-Hexanone	3.05	0.400	12.5	1.64		2
3-Chloropropene	ND	0.400	ND	1.25		2
4-Ethyltoluene	ND	0.400	ND	1.96		2
Acetone	76.2	1.00	181	2.37		2
Benzene	ND	0.400	ND	1.28		2
Benzyl chloride	ND	0.400	ND	2.07		2
Bromodichloromethane	ND	0.400	ND	2.68		2

07110813:07

07/11/08

Lab Number: L0809956

Report Date:

Lab ID: Client ID: Sample Location:	L0809956-02 SV-5 WAYLAND, MA				Date Field	Collected: Received: Prep:	07/02/08 1 07/03/08 Not Specif	
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor	
	Drganic Compounds		RDL	Results	RDE	Quaimer		
Bromoform		ND	0.400	ND	4.13		2	
Bromomethane		ND	0.400	ND	1.55		2	
Carbon disulfide		ND	0.400	ND	1.24		2	
Carbon tetrachloride		ND	0.400	ND	2.51		2	
Chlorobenzene		ND	0.400	ND	1.84		2	
Chloroethane		ND	0.400	ND	1.05		2	
Chloroform		1.97	0.400	9.61	1.95		2	
Chloromethane		ND	0.400	ND	0.825		2	
cis-1,2-Dichloroethene		ND	0.400	ND	1.58		2	
cis-1,3-Dichloropropene		ND	0.400	ND	1.81		2	
Cyclohexane		ND	0.400	ND	1.38		2	
Dibromochloromethane		ND	0.400	ND	3.40		2	
Dichlorodifluoromethane		0.538	0.400	2.66	1.98		2	
Ethanol		7.88	5.00	14.8	9.41		2	
Ethyl Acetate		ND	1.00	ND	3.60		2	
Ethylbenzene								
Freon-113		ND	0.400	ND	1.74		2	
Freon-114		ND	0.400	ND	3.06		2	
Hexachlorobutadiene		ND	0.400	ND	2.79		2	
		ND	0.400	ND	4.26		2	
sopropanol		5.12	1.00	12.6	2.46		2	
Methylene chloride		1.24	1.00	4.29	3.47		2	
4-Methyl-2-pentanone		ND	0.400	ND	1.64		2	
Methyl tert butyl ether		ND	0.400	ND	1.44		2	
o/m-Xylene		ND	0.800	ND	3.47		2	
o-Xylene		ND	0.400	ND	1.74		2	
Heptane		ND	0.400	ND	1.64		2	
n-Hexane		1.88	0.400	6.64	1.41		2	
Propylene		1.02	0.400	1.75	0.688		2	

WAYLAND TOWN CENTER

07110813:07

Lab Number: L0809956

Report Date:

07/11/08

Project Number: 12069-052

Project Name:

Lab ID: Client ID: Sample Location:	L0809956-02 SV-5 WAYLAND, MA	Date Fiel		Date	Collected: Received: Prep:	07/02/0 07/03/0 Not Sp		
Demonster		ppbV		ug/m3	RDL	Qualifian	Dilution Factor	
Parameter		Results	RDL	Results	RDL	Qualifier		
Low Level Volatile (Organic Compounds	in Air						
Styrene		ND	0.400	ND	1.70		2	
Tetrachloroethene		3.28	0.400	22.2	2.71		2	
Tetrahydrofuran		ND	0.400	ND	1.18		2	
Toluene		1.02	0.400	3.85	1.51		2	
trans-1,2-Dichloroethene	9	ND	0.400	ND	1.58		2	
trans-1,3-Dichloroproper	ne	ND	0.400	ND	1.81		2	
Trichloroethene		11.0	0.400	59.0	2.15		2	
Trichlorofluoromethane		77.3	0.400	434	2.24		2	
Vinyl acetate		0.817	0.400	2.88	1.41		2	
Vinyl bromide		ND	0.400	ND	1.75		2	
Vinyl chloride		ND	0.400	ND	1.02		2	

 Lab Number:
 L0809956

 Report Date:
 07/11/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/09/08 12:53

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	ounds in Air for sa	mple(s):	01-02 Batch: W0	G328542-3		
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorbenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	ND	0.200	ND	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	ND	0.200	ND	0.589		1
2-Hexanone	ND	0.200	ND	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND	0.982		1
Acetone	ND	0.500	ND	1.19		1
Benzene	ND	0.200	ND	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

 Lab Number:
 L0809956

 Report Date:
 07/11/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/09/08 12:53

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compo	unds in Air for sa	mple(s): 01	-02 Batch: WC	G328542-3		
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	ND	0.200	ND	0.976		1
Chloromethane	ND	0.200	ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	ND	0.200	ND	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	ND	0.200	ND	0.988		1
Ethanol	ND	2.50	ND	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	ND	0.200	ND	0.868		1
Freon-113	ND	0.200	ND	1.53		1
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
Isopropanol	ND	0.500	ND	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
o/m-Xylene	ND	0.400	ND	1.74		1
o-Xylene	ND	0.200	ND	0.868		1

 Lab Number:
 L0809956

 Report Date:
 07/11/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/09/08 12:53

	ppbVug/m3		m3		Dilution		
Parameter	Results	RDL	R	esults	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for	sample(s):	01-02 Ba	tch:	WG328542-3		
Heptane	ND	0.200		ND	0.819		1
n-Hexane	ND	0.200		ND	0.704		1
Propylene	ND	0.200		ND	0.344		1
Styrene	ND	0.200		ND	0.851		1
Tetrachloroethene	ND	0.200		ND	1.36		1
Tetrahydrofuran	ND	0.200		ND	0.589		1
Toluene	ND	0.200		ND	0.753		1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200		ND	0.907		1
Trichloroethene	ND	0.200		ND	1.07		1
Trichlorofluoromethane	ND	0.200		ND	1.12		1
Vinyl acetate	ND	0.200		ND	0.704		1
Vinyl bromide	ND	0.200		ND	0.874		1
Vinyl chloride	ND	0.200		ND	0.511		1

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-052 Lab Number: L0809956 Report Date: 07/11/08

Parameter	LCS %Recovery	LCSD %Recove	-	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s):	01-02 Bat	tch: WG328542-2		
1,1,1-Trichloroethane	109	-	70-130	-	
1,1,2,2-Tetrachloroethane	123	-	70-130	-	
1,1,2-Trichloroethane	116	-	70-130	-	
1,1-Dichloroethane	112	-	70-130	-	
1,1-Dichloroethene	99	-	70-130	-	
1,2,4-Trichlorobenzene	111	-	70-130	-	
1,2,4-Trimethylbenzene	123	-	70-130	-	
1,2-Dibromoethane	106	-	70-130	-	
1,2-Dichlorobenzene	120	-	70-130	-	
1,2-Dichloroethane	118	-	70-130	-	
1,2-Dichloropropane	122	-	70-130	-	
1,3,5-Trimethylbenzene	121	-	70-130	-	
1,3-Butadiene	101	-	70-130	-	
1,3-Dichlorobenzene	120	-	70-130	-	
1,4-Dichlorobenzene	122	-	70-130	-	
1,4-Dioxane	108	-	70-130	-	
2,2,4-Trimethylpentane	124	-	70-130	-	
2-Butanone	106	-	70-130	-	
2-Hexanone	117	-	70-130	-	
3-Chloropropene	114	-	70-130	-	
4-Ethyltoluene	120	-	70-130	-	

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-052 Lab Number: L0809956 Report Date: 07/11/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds	in Air Associated sample(s):	01-02 Batch:	WG328542-2		
Acetone	116	-	70-130	-	
Benzene	111	-	70-130	-	
Benzyl chloride	122	-	70-130	-	
Bromodichloromethane	117	-	70-130	-	
Bromoform	112	-	70-130	-	
Bromomethane	86	-	70-130	-	
Carbon disulfide	96	-	70-130	-	
Carbon tetrachloride	104	-	70-130	-	
Chlorobenzene	111	-	70-130	-	
Chloroethane	100	-	70-130	-	
Chloroform	112	-	70-130	-	
Chloromethane	97	-	70-130	-	
cis-1,2-Dichloroethene	113	-	70-130	-	
cis-1,3-Dichloropropene	111	-	70-130	-	
Cyclohexane	103	-	70-130	-	
Dibromochloromethane	109	-	70-130	-	
Dichlorodifluoromethane	96	-	70-130	-	
Ethyl Alcohol	119	-	70-130	-	
Ethyl Acetate	125	-	70-130	-	
Ethylbenzene	124	-	70-130	-	
1,1,2-Trichloro-1,2,2-Trifluoroethane	99	-	70-130	-	

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-052 Lab Number: L0809956 Report Date: 07/11/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds in	Air Associated sample(s):	01-02 Batch:	WG328542-2		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	98	-	70-130	-	
Hexachlorobutadiene	98	-	70-130	-	
iso-Propyl Alcohol	114	-	70-130	-	
Methylene chloride	102	-	70-130	-	
4-Methyl-2-pentanone	118	-	70-130	-	
Methyl tert butyl ether	116	-	70-130	-	
p/m-Xylene	124	-	70-130	-	
o-Xylene	125	-	70-130	-	
Heptane	119	-	70-130	-	
n-Hexane	102	-	70-130	-	
Propylene	99	-	70-130	-	
Styrene	120	-	70-130	-	
Tetrachloroethene	106	-	70-130	-	
Tetrahydrofuran	115	-	70-130	-	
Toluene	117	-	70-130	-	
trans-1,2-Dichloroethene	101	-	70-130	-	
trans-1,3-Dichloropropene	104	-	70-130	-	
Trichloroethene	110	-	70-130	-	
Trichlorofluoromethane	96	-	70-130	-	
Vinyl acetate	140	-	70-130	-	
Vinyl bromide	98	-	70-130	-	

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-052

 Lab Number:
 L0809956

 Report Date:
 07/11/08

<u>Pa</u>	rameter	LCS %Recovery		CSD covery	%Recovery Limits	RPD	RPD Limits
Lo	w Level Volatile Organic Compounds in Air	Associated sample(s):	01-02	Batch:	WG328542-2		
	Vinyl chloride	98		-	70-130	-	
	Naphthalene	106		-	70-130	-	

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-052

Lab Number:

L0809956 07/11/08 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
w Level Volatile Organic Compounds in Air	Associated sample(s): 01-02	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: DUP Sample
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
1,2,4-Trichlorbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
1,3,5-Trimethybenzene	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
2-Butanone	19.8	17.4	ppbV	13	25
2-Hexanone	2.69	2.72	ppbV	1	25

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-052

Lab Number:

L0809956 07/11/08 Report Date:

4-EthyltolueneNDNDPpbVNC24Acetone213182PpbV1625BenzeneNDNDPpbVNC25Benzyl chlorideNDNDPpbVNC25BromodichloromethaneNDNDPpbVNC25BromodichloromethaneNDNDPpbVNC25BromodichloromethaneNDNDPpbVNC25BromodichloromethaneNDNDPpbVNC25BromodichloromethaneNDNDPpbVNC25BromodichloromethaneNDNDPpbVNC25BromodichloromethaneNDNDPpbVNC25Carbon disulfide0.5150.497PpbV425ChlorobenzeneNDNDNDPpbVNC25Chloroform1.121.09PpbV325ChloromethaneNDNDNDPpbVNC25ChloromethaneNDNDPpbVNC25ChloromethaneNDNDPpbVNC25cis-1,2-DichloropeneNDNDPpbVNC25cis-1,3-DichloropropeneNDNDPpbVNC25CyclohexaneNDNDNDPpbVNC25CyclohexaneNDNDPpbVNC25CyclohexaneNDNDPpbVNC25	ameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
- EthylolueneNDNDppbVNC24Acetone213182ppbV1624BenzeneNDNDppbVNC24BenzeneNDNDppbVNC24BenzeneNDNDppbVNC24BenzeneNDNDppbVNC24BenzeneNDNDppbVNC24BenzeneNDNDppbVNC24BromotichloromethaneNDNDppbVNC24BromotichloromethaneNDNDppbVNC24BromotethaneNDNDppbVNC24Carbon disulfide0.5150.497ppbV424Carbon tetrachlorideNDNDppbVNC24ChlorobenzeneNDNDppbVNC24Chlorotorm1.121.09ppbV324ChlorotorhaneNDNDppbVNC24ChlorothaneNDNDppbV324ChlorothaneNDNDppbVNC24ChlorothaneNDNDppbVNC24ChlorothaneNDNDppbVNC24ChlorothaneNDNDppbVNC24ChlorothaneNDNDppbVNC24ChlorothaneNDNDppbVNC24ChlorothaneNDND	Level Volatile Organic Compounds in Air	Associated sample(s): 01-02	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: DUP Sample
Acetone213182ppbV1624BenzeneNDNDNDppbVNC24Benzyl chlorideNDNDNDppbVNC24BromodichloromethaneNDNDNDppbVNC24BromodichloromethaneNDNDNDppbVNC24BromodichloromethaneNDNDNDppbVNC24BromodichloromethaneNDNDppbVNC24BromotiormNDNDppbVNC24Carbon disulfide0.5150.497ppbV424Carbon tetrachlorideNDNDppbVNC24ChlorobenzeneNDNDppbVNC24Chloroform1.121.09ppbV324ChlorotethaneNDNDppbVNC24cis-1,3-DichloropropeneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24Cyclohexane </td <td>-Chloropropene</td> <td>ND</td> <td>ND</td> <td>ppbV</td> <td>NC</td> <td>25</td>	-Chloropropene	ND	ND	ppbV	NC	25
Benzene ND ND ppbV NC 24 Benzyl chloride ND ND ppbV NC 24 Bromodichloromethane ND ND ppbV NC 24 Carbon disulfide 0.515 0.497 ppbV 4 24 Carbon tetrachloride ND ND ppbV NC 24 Chlorobenzene ND ND ppbV NC 24 Chloroform 1.12 1.09 ppbV NC 24 Chlorobenzene ND ND ppbV 3 24 Chloroform 1.12 1.09 ppbV 3 24 Chlorobenzene ND ND ppbV NC 24 Chlorobenzene ND ND ppbV NC 24	-Ethyltoluene	ND	ND	ppbV	NC	25
Benzyl chlorideNDNDppbVNC23BromodichloromethaneNDNDNDppbVNC23BromodirNDNDNDppbVNC23BromodirmaNDNDNDppbVNC23BromodirmaNDNDNDppbVNC23BromodirmaNDNDNDppbVNC23Carbon disulfide0.5150.497ppbV423Carbon tetrachlorideNDNDppbVNC23ChlorobenzeneNDNDppbVNC23ChlorothaneNDNDppbVNC23ChlorothaneNDNDppbVNC23cis-1,2-DichloroetheneNDNDppbVNC23cis-1,3-DichloropropeneNDNDppbVNC23NDNDppbVNC2323CyclohexaneNDNDppbVNC23CyclohexaneNDNDppbVNC23CyclohexaneNDNDppbVNC23CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDNDppbVNC24CyclohexaneNDND <td< td=""><td>cetone</td><td>213</td><td>182</td><td>ppbV</td><td>16</td><td>25</td></td<>	cetone	213	182	ppbV	16	25
BromodichloromethaneNDNDppbVNC23BromoformNDNDNDppbVNC23BromomethaneNDNDNDppbVNC23Carbon disulfide0.5150.497ppbV423Carbon tetrachlorideNDNDNDppbV1024ChlorobenzeneNDNDNDppbVNC24Chloroform1.121.09ppbVNC24ChloromethaneNDNDppbV1024Chloroform1.121.09ppbV324ChloromethaneNDNDppbV1024ChloromethaneNDNDppbV324ChloromethaneNDNDppbV1024ChloromethaneNDNDppbV1024Cis-1,3-DichloropropeneNDNDppbV1024CyclohexaneNDNDppbV1024CyclohexaneNDNDppbV1024CyclohexaneNDNDppbV1024CyclohexaneNDNDppbV1024CyclohexaneNDNDppbV1024CyclohexaneNDNDppbV1024CyclohexaneNDNDppbV1024CyclohexaneNDNDppbV1024CyclohexaneNDND<	enzene	ND	ND	ppbV	NC	25
BromoformNDNDppbVNC25BromomethaneNDNDNDppbVNC25Carbon disulfide0.5150.497ppbV425Carbon tetrachlorideNDNDppbVNC25ChlorobenzeneNDNDNDppbVNC25ChlorobentaneNDNDppbVNC25ChlorobenzeneNDNDppbVNC25ChlorobentaneNDNDppbVNC25ChlorobentaneNDNDppbV325ChlorobentaneNDNDppbV325ChlorobentaneNDNDppbV1225ChlorobentaneNDNDppbV1225ChlorobentaneNDNDppbVNC25cis-1,2-DichloropteneNDNDppbVNC25cis-1,3-DichloropteneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25ChlorobertaneNDNDppbVNC <td>enzyl chloride</td> <td>ND</td> <td>ND</td> <td>ppbV</td> <td>NC</td> <td>25</td>	enzyl chloride	ND	ND	ppbV	NC	25
BromomethaneNDNDppbVNC25Carbon disulfide0.5150.497ppbV425Carbon tetrachlorideNDNDppbVNC25ChlorobenzeneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbV325ChlorothaneNDNDppbV325ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDNDppbVNC25ChlorothaneNDN	romodichloromethane	ND	ND	ppbV	NC	25
Carbon disulfide0.5150.497ppbV425Carbon tetrachlorideNDNDppbVNC25ChlorobenzeneNDNDppbVNC25ChloroethaneNDNDppbVNC25Chloroform1.121.09ppbV325ChloroethaneNDNDppbVNC25Chloroform1.121.09ppbV325ChloroethaneNDNDppbVNC25cis-1,2-DichloroetheneNDNDppbVNC25cis-1,3-DichloroptopeneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25C	romoform	ND	ND	ppbV	NC	25
Carbon tetrachlorideNDNDppbVNC25ChlorobenzeneNDNDNDppbVNC25ChloroethaneNDNDNDppbVNC25Chloroform1.121.09ppbV325ChloromethaneNDNDNDppbV325ChloromethaneNDNDppbVNC25cis-1,2-DichloroetheneNDNDppbVNC25cis-1,3-DichloropropeneNDNDppbVNC25CyclohexaneNDNDppbVNC25NDNDppbVNC2525CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25ChloropheneNDNDppbVNC25CyclohexaneNDNDppbVNC25ChloropheneNDNDppbVNC25ChloropheneNDNDNDNDND <td>romomethane</td> <td>ND</td> <td>ND</td> <td>ppbV</td> <td>NC</td> <td>25</td>	romomethane	ND	ND	ppbV	NC	25
ND ND ppbV NC 25 Chloroethane ND ND ppbV NC 25 Chloroethane ND ND ppbV NC 25 Chloroethane 1.12 1.09 ppbV 3 25 Chloroethane ND ND ppbV NC 25 cis-1,2-Dichloroethene ND ND ND NC 25 cis-1,3-Dichloropropene ND ND ND NC 25 Cyclohexane ND ND ppbV NC 25	arbon disulfide	0.515	0.497	ppbV	4	25
ChloroethaneNDNDppbVNC25Chloroform1.121.09ppbV325ChloromethaneNDNDppbVNC25cis-1,2-DichloroetheneNDNDppbVNC25cis-1,3-DichloropropeneNDNDppbVNC25CyclohexaneNDNDppbVNC25	arbon tetrachloride	ND	ND	ppbV	NC	25
Chloroform1.121.09ppbV325ChloromethaneNDNDppbVNC25cis-1,2-DichloroetheneNDNDppbVNC25cis-1,3-DichloropropeneNDNDppbVNC25CyclohexaneNDNDppbVNC25CyclohexaneNDNDppbVNC25	hlorobenzene	ND	ND	ppbV	NC	25
ND ND ppbV NC 25 cis-1,2-Dichloroethene ND ND ppbV NC 25 cis-1,3-Dichloropropene ND ND ppbV NC 25 Cyclohexane ND ND ppbV NC 25	hloroethane	ND	ND	ppbV	NC	25
NDNDppbVNC25cis-1,3-DichloropropeneNDNDppbVNC25CyclohexaneNDNDppbVNC25	hloroform	1.12	1.09	ppbV	3	25
cis-1,3-Dichloropropene ND ND ppbV NC 25 Cyclohexane ND ND ppbV NC 25	hloromethane	ND	ND	ppbV	NC	25
Cyclohexane ND ND ppbV NC 25	is-1,2-Dichloroethene	ND	ND	ppbV	NC	25
	is-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Dibromochloromethane ND ND ppbV NC 25	cyclohexane	ND	ND	ppbV	NC	25
	ibromochloromethane	ND	ND	ppbV	NC	25
Dichlorodifluoromethane 0.486 0.481 ppbV 1 25	ichlorodifluoromethane	0.486	0.481	ppbV	1	25

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-052

Lab Number:

L0809956 07/11/08 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
w Level Volatile Organic Compounds in Air	Associated sample(s): 01-02	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: DUP Sample
Ethanol	16.8	15.9	ppbV	6	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
Freon-113	ND	ND	ppbV	NC	25
Freon-114	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
Isopropanol	17.0	16.5	ppbV	3	25
Methylene chloride	1.31	1.30	ppbV	1	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
p/m-Xylene	0.898	0.861	ppbV	4	25
o-Xylene	ND	ND	ppbV	NC	25
Heptane	ND	0.404	ppbV	NC	25
n-Hexane	2.30	2.26	ppbV	2	25
Propylene	2.18	2.10	ppbV	4	25
Styrene	ND	ND	ppbV	NC	25
Tetrachloroethene	4.41	4.49	ppbV	2	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
Toluene	1.68	1.70	ppbV	1	25

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-052

Lab Number: Report Date:

L0809956 07/11/08

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s): 01-02	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: DUP Sample
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Trichloroethene	5.43	5.41	ppbV	0	25
Trichlorofluoromethane	42.9	42.2	ppbV	2	25
Vinyl acetate	1.23	1.10	ppbV	11	25
Vinyl bromide	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25

Report Date: 07/11/08

Project Number: 12069-052

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L0809956-01	SV-4	0021	#30 SV		-	-	39	39	0
L0809956-01	SV-4	384	2.7L Can	L0809159-01	-29.4	0	-	-	-
L0809956-02	SV-5	0194	#30 SV		-	-	39	40	3
L0809956-02	SV-5	459	2.7L Can	L0809159-01	-29.4	-0.4	-	-	-

Project Name:WAYLAND TOWN CENTERProject Number:12069-052

Lab Number: L0809956 Report Date: 07/11/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
N/A	Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0809956-01A	Canister - 2.7 Liter	N/A	NA	N/A	NA	Absent	TO15-LL
L0809956-02A	Canister - 2.7 Liter	N/A	NA	N/A	NA	Absent	TO15-LL

Project Name: WAYLAND TOWN CENTER

Project Number: 12069-052

Lab Number: L0809956 Report Date: 07/11/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Project Name:WAYLAND TOWN CENTERProject Number:12069-052

 Lab Number:
 L0809956

 Report Date:
 07/11/08

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

	CARSI	30 816						2/8/05		7 4 .		l wax		Form No: 101-02 (rev. 1-Feb-00)	FORM NO: TO
								2011	8.	<u>an 1</u>		A STATE	-		• : :
Terms and Conditions.] :	R		1	モンろ			A the		1		
submitted are subject to Alpha's	T ac	7/2/22	3	in a contraction	シ	Dr. austa	100	301 410							
¢ Ģ	Date/Time:	Da	•	/ed By:	Receive		Time	Date/Time		1 _{BY}	Relinquished)			
Please print clearly, legibly and completely. Samples can not be completely in and turnaround time			/pe	Container Type	Cor			i	SVE	andfill Gas/ cify	SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify	-	*SAMPLE MATRIX CODES	*SAMPLE N	J.
					∕ך				tdoor	- (Indoor/Ou	AA = Amhient Air (Indoor/Outdoor)	A			
								$\ $							
									/						
											<u></u>				
		×	459 0194	4	Den	5	6	ι ż	liio	0935 1	¢ 0		SV-S~	4	
		8	384 0021	2 1.12	Daw	M	6	55-	1045-	1	7/2/08 0405		SV-4		9956.
Sample Comments (i.e. PID)	APH FIXE	TO.1	I D I D - Flow Can Controller	Can I Size C		Sample Sampler's Matrix* Initials	Final S Vacuum I	Initial Vacuum	ectic Id Time	Start Time End Time Vacuum	Date Sta		Sample ID	Lab ID ∋ Only)	ALPHA Lab ID (Lab Use Only)
170	5 SIM	4A by	-	ıt	d Out	Filled		Below Must Be	low		Columns	AII C			
-10	I SES	70-15					2								
											ients:	nts/Comm	Other Project Specific Requirements/Comments:	roject Spec	Other F
SIS	ANALYSIS	_						Time:	-	SDAY	Date Due:	l X	rail: K. Le Blance Haley aldrich, c-	Samples have be	Email:
							(ipev	RUSH (cnly confirmed if pre-approved!)	SH (cnty conf		□ Standard				Fax:
			lager)	an Project Man	: (if different the	Report to: (if different than Project Manager)	.*			nd Time	Turn-Around Time		886-7400	(017-	Phone:
Program Criteria	State/Fed			erables:	Additional Deliverables:	Additic				3#	ALPHA Quote #:		\$	Str	
Regulatory Requirements/Report Limits	Regulatory R) т	r Formats:(standard pdf report)	Other Formats: MAIL (standard p	Othe MAIL) 7	λ	ger: K, C	Ina	Ň.		1/2 Wooll	ñ.
		ã	Criteria Checker: (Default based on Regulatory Criteria Indicated)	ker: n Regulator	Criteria Checker: (Default based on Re	Criti (De		ir Z	y/anel	17 mar	Project #: 17 m/m / a ~ <			itala. t	Client:
		,					lest	3	Incl 1	n ulay	Project Location: 1 / / a		TEL: 508-822-9300 FAX: 508-822-3288	Client Information	TEL: 508
nt info PO #:	□ Same as Client info												320 Forbes Blvd, Mansfield, MA 02048	s Blvd, Manst	320 Forbe
0	Billing Information	hles	formation - Data Deliverables	on - Da	u m cau.	Date Net				rmation	Droioot Info	STODY	CHAIN OF CUSTODY	ALPHA	
#: 1 ncn99 rl	ALPHA Job #:			2		Date Dan'd		m Ofi	PAGE	ົດ	AIR ANALYSIS	IR AN	Þ		

Page 26 of 26

	Form No. 101 02 (ray 1 Eeh-OR)	wald he	Aelinquishe	AA = Ambient Air (In *SAMPLE MATRIX CODES SV = Soil Vapor/Land Other = Please Specify				9956.1 SV-4 7/4/08 0	ALPHA Lab ID (Lab Use Only) Sample ID Date St	All Columns		These samples have been previously analyzed by Alpha Date Due:	886-7400	Riston	Address: US Mand The Project #:	Information	TEL: 508-822-9300 FAX: 508-822-3288 Project Nam	CHAIN OF CUSTODY Project Information	
	when the set of the se	W Thips The DCGANSTAD	edyBy Date/Time RedS	door/Outdoor) fill Gas/SVE			0935 1110 -35 -6 Mar		Start Time End Time Vacuum Vacuum Matrix* Initial	Be			Turn-Around Time		Project #: 12069-052 Other Formats:		Project Name: Wayland Town Center UFAX		SIS PAGE OF Date Rec'd in Lab:
0051 30 SIL	The Icit		Ved By: Date/Time:	Container Type			1 V 459 0194 X	12.72 384 arc1 R	Can ID ID-Flow 7.14.75 75 Size Can Controller 7.70.70 APH 120	Ctt	5	ANALYSIS	ant than Project Manager)	State/Fed		hecker:	□ Same as Client info	Report Information - Data Deliverables Billing Information	ab: 7/3 ALPHA Job #:
	See reverse side.	submitted are subject to Alpha's	clock will not start until any ambi-	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time					Sample Comments (i.e. PID)	10.10		SI		Program Criteria	Regulatory Requirements/Report Limits		info PO #:	ation	: 10809956

ANALYTICAL REPORT

Lab Number:	L0809898
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN:	Kate Leblanc
Project Name:	WAYLAND TOWN CNT.
Project Number:	12069-054
Report Date:	07/11/08

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:WAYLAND TOWN CNT.Project Number:12069-054

 Lab Number:
 L0809898

 Report Date:
 07/11/08

Alpha Sample ID	Client ID	Sample Location
L0809898-01	SV-14	WAYLAND, MA
L0809898-02	SVE-2	WAYLAND, MA

Project Name:WAYLAND TOWN CNT.Project Number:12069-054

 Lab Number:
 L0809898

 Report Date:
 07/11/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

TO-15

L0809898-01 has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L0809898-02 required re-analysis on a dilution in order to quantitate the sample within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range. The WG328542-2 LCS recovery for Vinyl Acetate is outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kathle M. obrin

Title: Technical Director/Representative

Date: 07/11/08

AIR

07110813:02

L0809898

07/11/08

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

SAMPLE RESULTS

Date Collected:07/03/08 15:00Date Received:07/03/08Field Prep:Not Specified

Lab Number:

Report Date:

Lab ID:	L0809898-01
Client ID:	SV-14
Sample Location:	WAYLAND, MA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	07/09/08 23:10
Analyst:	AR

	ppb\	/	ug/m:	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Corr	npounds in Air					
1,1,1-Trichloroethane	7.80	5.00	42.6	27.2		25
1,1,2,2-Tetrachloroethane	ND	5.00	ND	34.3		25
1,1,2-Trichloroethane	ND	5.00	ND	27.2		25
1,1-Dichloroethane	ND	5.00	ND	20.2		25
1,1-Dichloroethene	ND	5.00	ND	19.8		25
1,2,4-Trichlorbenzene	ND	5.00	ND	37.1		25
1,2,4-Trimethylbenzene	ND	5.00	ND	24.6		25
1,2-Dibromoethane	ND	5.00	ND	38.4		25
1,2-Dichlorobenzene	ND	5.00	ND	30.0		25
1,2-Dichloroethane	ND	5.00	ND	20.2		25
1,2-Dichloropropane	ND	5.00	ND	23.1		25
1,3,5-Trimethybenzene	ND	5.00	ND	24.6		25
1,3-Butadiene	ND	5.00	ND	11.0		25
1,3-Dichlorobenzene	ND	5.00	ND	30.0		25
1,4-Dichlorobenzene	ND	5.00	ND	30.0		25
1,4-Dioxane	ND	5.00	ND	18.0		25
2,2,4-Trimethylpentane	ND	5.00	ND	23.3		25
2-Butanone	10.2	5.00	29.9	14.7		25
2-Hexanone	ND	5.00	ND	20.5		25
3-Chloropropene	ND	5.00	ND	15.6		25
4-Ethyltoluene	ND	5.00	ND	24.6		25
Acetone	76.7	12.5	182	29.7		25
Benzene	ND	5.00	ND	16.0		25
Benzyl chloride	ND	5.00	ND	25.9		25
Bromodichloromethane	ND	5.00	ND	33.5		25

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

07110813:02

07/11/08

Lab Number: L0809898

Report Date:

00

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0809898-01 SV-14 WAYLAND, MA				Date	e Collected: e Received: d Prep:	07/03/	08 15:00 08 becified
		ppbV	/	ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	_
Low Level Volatile	Organic Compounds	s in Air						
Bromoform		ND	5.00	ND	51.6		25	
Bromomethane		ND	5.00	ND	19.4		25	
Carbon disulfide		ND	5.00	ND	15.6		25	
Carbon tetrachloride		ND	5.00	ND	31.4		25	
Chlorobenzene		ND	5.00	ND	23.0		25	
Chloroethane		ND	5.00	ND	13.2		25	
Chloroform		5.24	5.00	25.6	24.4		25	
Chloromethane		ND	5.00	ND	10.3		25	
cis-1,2-Dichloroethene		ND	5.00	ND	19.8		25	
cis-1,3-Dichloropropene		ND	5.00	ND	22.7		25	
Cyclohexane		ND	5.00	ND	17.2		25	
Dibromochloromethane		ND	5.00	ND	42.6		25	
Dichlorodifluoromethane)	173	5.00	856	24.7		25	
Ethanol		ND	62.5	ND	118.		25	
Ethyl Acetate		ND	12.5	ND	45.0		25	
Ethylbenzene		ND	5.00	ND	21.7		25	
Freon-113		ND	5.00	ND	38.3		25	
Freon-114		ND	5.00	ND	34.9		25	
Hexachlorobutadiene		ND	5.00	ND	53.3		25	
Isopropanol		ND	12.5	ND	30.7		25	
Methylene chloride		ND	12.5	ND	43.4		25	
4-Methyl-2-pentanone		ND	5.00	ND	20.5		25	
Methyl tert butyl ether		ND	5.00	ND	18.0		25	
p/m-Xylene		ND	10.0	ND	43.4		25	
o-Xylene		ND	5.00	ND	21.7		25	
Heptane		ND	5.00	ND	20.5		25	
n-Hexane		ND	5.00	ND	17.6		25	
Propylene		ND	5.00	ND	8.60		25	

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

07110813:02

07/11/08

Lab Number: L0809898

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0809898-01 SV-14 WAYLAND, MA				Date	Date Collected: Date Received: Field Prep:		08 15:00 08 ecified
		ppbV	/	ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	5.00	ND	21.3		25	
Tetrachloroethene		33.4	5.00	226	33.9		25	
Tetrahydrofuran		ND	5.00	ND	14.7		25	
Toluene		ND	5.00	ND	18.8		25	
trans-1,2-Dichloroethene	9	ND	5.00	ND	19.8		25	
trans-1,3-Dichloroproper	ne	ND	5.00	ND	22.7		25	
Trichloroethene		2370	5.00	12700	26.8		25	
Trichlorofluoromethane		66.9	5.00	376	28.1		25	
Vinyl acetate		ND	5.00	ND	17.6		25	
Vinyl bromide		ND	5.00	ND	21.8		25	
Vinyl chloride		ND	5.00	ND	12.8		25	

07110813:02

L0809898

07/11/08

Lab Number:

Report Date:

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

SAMPLE RESULTS

Lab ID: Date Collected: L0809898-02 07/03/08 14:35 Client ID: SVE-2 Date Received: 07/03/08 Field Prep: Sample Location: WAYLAND, MA Not Specified Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 07/09/08 23:47 Analyst: AR

	ppbV	,	ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Com	pounds in Air					
1,1,1-Trichloroethane	1.45	0.200	7.93	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND	0.200	ND	0.792		1
1,2,4-Trichlorbenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	1.04	0.200	5.12	0.982		1
1,2-Dibromoethane	ND	0.200	ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809		1
1,2-Dichloropropane	ND	0.200	ND	0.924		1
1,3,5-Trimethybenzene	0.383	0.200	1.88	0.982		1
1,3-Butadiene	ND	0.200	ND	0.442		1
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	0.336	0.200	2.02	1.20		1
1,4-Dioxane	ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
2-Butanone	>100	0.2	>295	0.589		1
2-Hexanone	16.3	0.200	66.8	0.819		1
3-Chloropropene	ND	0.200	ND	0.626		1
4-Ethyltoluene	0.300	0.200	1.47	0.982		1
Acetone	>100	0.5	>238	1.19		1
Benzene	3.61	0.200	11.5	0.638		1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

07110813:02

L0809898

07/11/08

Lab Number: Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0809898-02 SVE-2 WAYLAND, MA				Date Field	Collected: Received: Prep:	07/03/08 07/03/08 Not Spee
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor
Low Level Volatile C	Drganic Compounds		RDE	Results	RBE	Quanter	
Bromoform	5	ND	0.200	ND	2.06		1
Bromomethane		ND	0.200	ND	0.776		1
Carbon disulfide		4.96	0.200	15.4	0.622		1
Carbon tetrachloride		4.90 ND	0.200	ND	1.26		1
Chlorobenzene		ND	0.200	ND	0.920		1
Chloroethane		0.275	0.200	0.725	0.520		1
Chloroform		0.302	0.200	1.47	0.976		1
Chloromethane		0.861	0.200	1.78	0.978		1
cis-1,2-Dichloroethene		ND	0.200	ND	0.413		1
cis-1,3-Dichloropropene		ND	0.200	ND	0.792		1
Cyclohexane		0.486	0.200	1.67	0.907		1
Dibromochloromethane							
Dichlorodifluoromethane		ND	0.200	ND	1.70		1
Ethanol		0.482	0.200	2.38	0.988		1
Ethyl Acetate		77.3	2.50	146	4.71		1
•		ND	0.500	ND	1.80		1
Ethylbenzene		1.02	0.200	4.41	0.868		1
Freon-113		0.206	0.200	1.57	1.53		1
Freon-114		ND	0.200	ND	1.40		1
Hexachlorobutadiene		ND	0.200	ND	2.13		1
Isopropanol		6.95	0.500	17.1	1.23		1
Methylene chloride		1.13	0.500	3.91	1.74		1
4-Methyl-2-pentanone		2.42	0.200	9.89	0.819		1
Methyl tert butyl ether		ND	0.200	ND	0.720		1
p/m-Xylene		2.55	0.400	11.0	1.74		1
o-Xylene		1.12	0.200	4.88	0.868		1
Heptane		3.02	0.200	12.4	0.819		1
n-Hexane		3.77	0.200	13.3	0.704		1
Propylene		28.7	0.200	49.4	0.344		1

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

07110813:02

07/11/08

Lab Number: L0809898

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0809898-02 SVE-2 WAYLAND, MA				Date Collected: Date Received: Field Prep:		07/03/0 07/03/0 Not Sp	
		ppbV		ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air						
Styrene		0.388	0.200	1.65	0.851		1	
Tetrachloroethene		15.8	0.200	107	1.36		1	
Tetrahydrofuran		ND	0.200	ND	0.589		1	
Toluene		5.04	0.200	19.0	0.753		1	
trans-1,2-Dichloroethene	9	ND	0.200	ND	0.792		1	
trans-1,3-Dichloroproper	ne	ND	0.200	ND	0.907		1	
Trichloroethene		18.5	0.200	99.4	1.07		1	
Trichlorofluoromethane		2.97	0.200	16.7	1.12		1	
Vinyl acetate		13.6	0.200	47.7	0.704		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511		1	

Project Name						(Number:	07110813:0	_
Project Name:	WAYLAND TOWN	CNT.			Lapr	Number.	L080989	8
Project Number:	12069-054				Repo	ort Date:	07/11/08	
		S	AMPLE RE	SULTS				
Lab ID: Client ID: Sample Location: Matrix: Anaytical Method: Analytical Date: Analyst:	L0809898-02 R SVE-2 WAYLAND, MA Soil_Vapor 48,TO-15 07/10/08 07:04 AR				Date	Collected: Received: Prep:	07/03/0 07/03/0 Not Spe	8
		ppbV	/	ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air						
2-Butanone		86.5	2.00	255	5.89		10	
Acetone		779	5.00	1850	11.9		10	

 Lab Number:
 L0809898

 Report Date:
 07/11/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/09/08 12:53

Project Number: 12069-054

	ppbV			ug/m	3		Dilution
Parameter	Results	RDL		Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for sa	mple(s):	01-02	Batch: W	/G328542-3		
1,1,1-Trichloroethane	ND	0.200		ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		1
1,1,2-Trichloroethane	ND	0.200		ND	1.09		1
1,1-Dichloroethane	ND	0.200		ND	0.809		1
1,1-Dichloroethene	ND	0.200		ND	0.792		1
1,2,4-Trichlorbenzene	ND	0.200		ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.982		1
1,2-Dibromoethane	ND	0.200		ND	1.54		1
1,2-Dichlorobenzene	ND	0.200		ND	1.20		1
1,2-Dichloroethane	ND	0.200		ND	0.809		1
1,2-Dichloropropane	ND	0.200		ND	0.924		1
1,3,5-Trimethybenzene	ND	0.200		ND	0.982		1
1,3-Butadiene	ND	0.200		ND	0.442		1
1,3-Dichlorobenzene	ND	0.200		ND	1.20		1
1,4-Dichlorobenzene	ND	0.200		ND	1.20		1
1,4-Dioxane	ND	0.200		ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934		1
2-Butanone	ND	0.200		ND	0.589		1
2-Hexanone	ND	0.200		ND	0.819		1
3-Chloropropene	ND	0.200		ND	0.626		1
4-Ethyltoluene	ND	0.200		ND	0.982		1
Acetone	ND	0.500		ND	1.19		1
Benzene	ND	0.200		ND	0.638		1
Benzyl chloride	ND	0.200		ND	1.03		1
Bromodichloromethane	ND	0.200		ND	1.34		1

 Lab Number:
 L0809898

 Report Date:
 07/11/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/09/08 12:53

Project Number: 12069-054

	ppbVug/m3			Dilution			
Parameter	Results	RDL		Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for	sample(s):	01-02	Batch: V	VG328542-3		
Bromoform	ND	0.200		ND	2.06		1
Bromomethane	ND	0.200		ND	0.776		1
Carbon disulfide	ND	0.200		ND	0.622		1
Carbon tetrachloride	ND	0.200		ND	1.26		1
Chlorobenzene	ND	0.200		ND	0.920		1
Chloroethane	ND	0.200		ND	0.527		1
Chloroform	ND	0.200		ND	0.976		1
Chloromethane	ND	0.200		ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200		ND	0.907		1
Cyclohexane	ND	0.200		ND	0.688		1
Dibromochloromethane	ND	0.200		ND	1.70		1
Dichlorodifluoromethane	ND	0.200		ND	0.988		1
Ethanol	ND	2.50		ND	4.71		1
Ethyl Acetate	ND	0.500		ND	1.80		1
Ethylbenzene	ND	0.200		ND	0.868		1
Freon-113	ND	0.200		ND	1.53		1
Freon-114	ND	0.200		ND	1.40		1
Hexachlorobutadiene	ND	0.200		ND	2.13		1
Isopropanol	ND	0.500		ND	1.23		1
Methylene chloride	ND	0.500		ND	1.74		1
4-Methyl-2-pentanone	ND	0.200		ND	0.819		1
Methyl tert butyl ether	ND	0.200		ND	0.720		1
p/m-Xylene	ND	0.400		ND	1.74		1
o-Xylene	ND	0.200		ND	0.868		1

 Lab Number:
 L0809898

 Report Date:
 07/11/08

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/09/08 12:53

Project Number: 12069-054

	ppbV			ug/	/m3		Dilution
Parameter	Results	RDL	I	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	s in Air for s	sample(s):	01-02 B	atch:	WG328542-3		
Heptane	ND	0.200		ND	0.819		1
n-Hexane	ND	0.200		ND	0.704		1
Propylene	ND	0.200		ND	0.344		1
Styrene	ND	0.200		ND	0.851		1
Tetrachloroethene	ND	0.200		ND	1.36		1
Tetrahydrofuran	ND	0.200		ND	0.589		1
Toluene	ND	0.200		ND	0.753		1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200		ND	0.907		1
Trichloroethene	ND	0.200		ND	1.07		1
Trichlorofluoromethane	ND	0.200		ND	1.12		1
Vinyl acetate	ND	0.200		ND	0.704		1
Vinyl bromide	ND	0.200		ND	0.874		1
Vinyl chloride	ND	0.200		ND	0.511		1

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054 Lab Number: L0809898 Report Date: 07/11/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s):	01-02 Batch:	WG328542-2		
1,1,1-Trichloroethane	109	-	70-130	-	
1,1,2,2-Tetrachloroethane	123	-	70-130	-	
1,1,2-Trichloroethane	116	-	70-130	-	
1,1-Dichloroethane	112	-	70-130	-	
1,1-Dichloroethene	99	-	70-130	-	
1,2,4-Trichlorobenzene	111	-	70-130	-	
1,2,4-Trimethylbenzene	123	-	70-130	-	
1,2-Dibromoethane	106	-	70-130	-	
1,2-Dichlorobenzene	120	-	70-130	-	
1,2-Dichloroethane	118	-	70-130	-	
1,2-Dichloropropane	122	-	70-130	-	
1,3,5-Trimethylbenzene	121	-	70-130	-	
1,3-Butadiene	101	-	70-130	-	
1,3-Dichlorobenzene	120	-	70-130	-	
1,4-Dichlorobenzene	122	-	70-130	-	
1,4-Dioxane	108	-	70-130	-	
2,2,4-Trimethylpentane	124	-	70-130	-	
2-Butanone	106	-	70-130	-	
2-Hexanone	117	-	70-130	-	
3-Chloropropene	114	-	70-130	-	
4-Ethyltoluene	120	-	70-130	-	

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054 Lab Number: L0809898 Report Date: 07/11/08

rameter	LCS %Recovery		CSD covery	%Recovery Limits	RPD	RPD Limits
w Level Volatile Organic Compounds in Air	Associated sample(s):	01-02	Batch:	WG328542-2		
Acetone	116		-	70-130	-	
Benzene	111		-	70-130	-	
Benzyl chloride	122		-	70-130	-	
Bromodichloromethane	117		-	70-130	-	
Bromoform	112		-	70-130	-	
Bromomethane	86		-	70-130	-	
Carbon disulfide	96		-	70-130	-	
Carbon tetrachloride	104		-	70-130	-	
Chlorobenzene	111		-	70-130	-	
Chloroethane	100		-	70-130	-	
Chloroform	112		-	70-130	-	
Chloromethane	97		-	70-130	-	
cis-1,2-Dichloroethene	113		-	70-130	-	
cis-1,3-Dichloropropene	111		-	70-130	-	
Cyclohexane	103		-	70-130	-	
Dibromochloromethane	109		-	70-130	-	
Dichlorodifluoromethane	96		-	70-130	-	
Ethyl Alcohol	119		-	70-130	-	
Ethyl Acetate	125		-	70-130	-	
Ethylbenzene	124		-	70-130	-	
1,1,2-Trichloro-1,2,2-Trifluoroethane	99		-	70-130	-	

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054 Lab Number: L0809898 Report Date: 07/11/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Low Level Volatile Organic Compounds i	in Air Associated sample(s):	01-02 Batch: W	G328542-2		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	98	-	70-130	-	
Hexachlorobutadiene	98	-	70-130	-	
iso-Propyl Alcohol	114	-	70-130	-	
Methylene chloride	102	-	70-130	-	
4-Methyl-2-pentanone	118	-	70-130	-	
Methyl tert butyl ether	116	-	70-130	-	
p/m-Xylene	124	-	70-130	-	
o-Xylene	125	-	70-130	-	
Heptane	119	-	70-130	-	
n-Hexane	102	-	70-130	-	
Propylene	99	-	70-130	-	
Styrene	120	-	70-130	-	
Tetrachloroethene	106	-	70-130	-	
Tetrahydrofuran	115	-	70-130	-	
Toluene	117	-	70-130	-	
trans-1,2-Dichloroethene	101	-	70-130	-	
trans-1,3-Dichloropropene	104	-	70-130	-	
Trichloroethene	110	-	70-130	-	
Trichlorofluoromethane	96	-	70-130	-	
Vinyl acetate	140	-	70-130	-	
Vinyl bromide	98	-	70-130	-	

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

 Lab Number:
 L0809898

 Report Date:
 07/11/08

<u>Pa</u>	rameter	LCS %Recovery		CSD covery	%Recovery Limits	RPD	RPD Limits
Lo	w Level Volatile Organic Compounds in Air	Associated sample(s):	01-02	Batch:	WG328542-2		
	Vinyl chloride	98		-	70-130	-	
	Naphthalene	106		-	70-130	-	

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

Lab Number: L0809898 07/11/08 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s): 01-02	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: DUP Sample
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
1,2,4-Trichlorbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
1,3,5-Trimethybenzene	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
2-Butanone	19.8	17.4	ppbV	13	25
2-Hexanone	2.69	2.72	ppbV	1	25

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

Lab Number:

 Lab Number:
 L0809898

 Report Date:
 07/11/08

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
w Level Volatile Organic Compounds in Air	Associated sample(s): 01-02	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: DUP Sample
3-Chloropropene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
Acetone	213	182	ppbV	16	25
Benzene	ND	ND	ppbV	NC	25
Benzyl chloride	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Carbon disulfide	0.515	0.497	ppbV	4	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Chloroform	1.12	1.09	ppbV	3	25
Chloromethane	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
Dichlorodifluoromethane	0.486	0.481	ppbV	1	25

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

Lab Number:

 Lab Number:
 L0809898

 Report Date:
 07/11/08

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s): 01-02	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: DUP Sample
Ethanol	16.8	15.9	ppbV	6	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
Freon-113	ND	ND	ppbV	NC	25
Freon-114	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
Isopropanol	17.0	16.5	ppbV	3	25
Methylene chloride	1.31	1.30	ppbV	1	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
p/m-Xylene	0.898	0.861	ppbV	4	25
o-Xylene	ND	ND	ppbV	NC	25
Heptane	ND	0.404	ppbV	NC	25
n-Hexane	2.30	2.26	ppbV	2	25
Propylene	2.18	2.10	ppbV	4	25
Styrene	ND	ND	ppbV	NC	25
Tetrachloroethene	4.41	4.49	ppbV	2	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
Toluene	1.68	1.70	ppbV	1	25

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

Lab Number:

L0809898 07/11/08 Report Date:

Low Level Volatile Organic Compounds in Air Associated sample(s): 01-02 QC Batch ID: WG328542-4 QC Sample: L0809833-02 Client ID: DUP Sample trans-1,2-Dichloroethene ND ND ppbV NC 25 trans-1,3-Dichloroptopene ND ND ppbV NC 25 Trichloroethene 5.43 5.41 ppbV 0 25 Trichloroethene 42.9 42.2 ppbV 0 25 Vinyl acetate 1.23 1.10 ppbV 11 25 Vinyl bromide ND ND ND 25 25 Vinyl chloride ND ND 0 25 25 Vinyl chloride ND ND ND 25 25	Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
NDNDppbVNC25Trichloroptopene5.435.41ppbV025Trichlorofluoromethane42.942.2ppbV225Vinyl acetate1.231.10ppbV1125Vinyl bromideNDNDNDppbV025	ow Level Volatile Organic Compounds in Air	Associated sample(s): 01-02	QC Batch ID: WG328542-4	QC Sample:	L0809833-02	Client ID: DUP Sample
Trichloroethene5.435.41ppbV025Trichlorofluoromethane42.942.2ppbV225Vinyl acetate1.231.10ppbV1125Vinyl bromideNDNDppbV025	trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Trichlorofluoromethane42.942.2ppbV225Vinyl acetate1.231.10ppbV1125Vinyl bromideNDNDppbVNC25	trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Vinyl acetate1.231.10ppbV1125Vinyl bromideNDNDppbVNC25	Trichloroethene	5.43	5.41	ppbV	0	25
Vinyl bromide ND ND ppbV NC 25	Trichlorofluoromethane	42.9	42.2	ppbV	2	25
	Vinyl acetate	1.23	1.10	ppbV	11	25
Vinyl chlorideNDNDppbVNC25	Vinyl bromide	ND	ND	ppbV	NC	25
	Vinyl chloride	ND	ND	ppbV	NC	25

Report Date: 07/11/08

Project Number: 12069-054

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L0809898-01	SV-14	0016	#30 SV		-	-	32	31	3
L0809898-01	SV-14	379	2.7L Can	10808739	-29.3	-2.5	-	-	-
L0809898-02	SVE-2	0339	#30 SV		-	-	37	38	3
L0809898-02	SVE-2	499	2.7L Can	L0809159-01	-29.4	-3.6	-	-	-

Project Name:WAYLAND TOWN CNT.Project Number:12069-054

Lab Number: L0809898 Report Date: 07/11/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
N/A	Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0809898-01A	Canister - 2.7 Liter	N/A	NA	N/A	NA	Absent	TO15-LL
L0809898-02A	Canister - 2.7 Liter	N/A	NA	N/A	NA	Absent	TO15-LL

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

Lab Number: L0809898 Report Date: 07/11/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Project Name: WAYLAND TOWN CNT. Project Number: 12069-054
 Lab Number:
 L0809898

 Report Date:
 07/11/08

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

		 	 								07	11081:	3:02		
Form No: 101-02 (rev.1-Feb-08)	*SAMPLE			, T	1:8636	ALPHA Lab ID (Lab Use Only)		These samples have	Email:	Phone: 617	Address: AC	Client HALEY &	Client Information	320 Forbes Blvd, Mansfield, MA 02048	ά Δυγια
	*SAMPLE MATRIX CODES			SUEZ	SU-14	Sample ID		These samples have been previously analyzed by Alpha		886-2900	MESTERD S	& ALDNICH J	FRA: 508-822-3288	nsfield, MA 02048	AIR A
Relinduished By:	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Rease Specify			11 1315	7/3/08/310	C c Date Start Time	mns	Npha Date Due: 50,	10 DAYS	Turn-Around Time	ALPHA Quote #:		Project Location:		AIR ANALYSIS
Date/Time 	f/Outdoor) Gas/SVE			1435-29 0	1500 -3:		Below Must I	A Time:	RUSH (only confirmed if pre-approved!)	ne	K, Leounc	12069-054	tykand Joun Cui		PAGEOF
135 Jan March	C,			1	0	Sample Sampler's Matrix* Initials	Be Filled O			Report to: (if different t	G EMAIL (standard pdf report) Additional Deliverables:	(Default based on Re Other Formats:		Report I	Date Rec'd in Lab:
Ad By: 1/3/09 20	Container Type			" 499 0339	379 0016	1 I D I D - Flow Can Controller				(if different than Project Manager)	ard pdf report) verables:	Driteria Checker: (Default based on Regulatory Criteria Indicated) Other Formats:		nformation - Data Deliverables	». 1/3
Date/Time: 2/3/08 17:50 1/3/08 1835				×		APH FIXED C	ASES		ANALYSIS		Regulatory F State/Fed			_	ALPHA Job #:
guities are resolved. All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time					Sample Comments (i.e. PID)	0.10		SIS		Regulatory Requirements/Report Limits State/Fed Program Criteria			_ 2	#: L0809898
ambi- nples ha's	and ot be					PID)					imits				• • • • •

Form No: 101-02 (rev.1-Feb-08)	*SAMPL		4	1:8636	ALPHA Lab ID (Lab Use Only)	Other Project S	Email:	Phone: 617 Fax:	Address: Abd	Client HALEY &	TEL: 508-822-9300	320 Forbes Blvd. Ma	
(80-9 (10-9 (10-9 (10-9)	*SAMPLE MATRIX CODES		SUE	SU-14	All Sample ID	Other Project Specific Requirements/Comments:	ail: These samples have been previously analyzed by Alpha	- 886-7900	MESTERN ST	· & ALDNICH Ju	TEL: 508-822-9300 FAX: 508-822-3288	Ins	AIR A
Relinguished By: Date/Time	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Rease Specify		" izis 1435-29	7/3/08/310 1500 -3:	All Columns Below Must Be		a Date Due: んんス V Time:	und T	ALPHA Quote #:	Project #: 12069-054	Project Name: WAYKAND Town Cui	Project Information	
ime Received By: 19 20 Anna India 1/3/1	Container Type			05722	Sample Sampler's Can I D Matrix* Initials Size Can		edi)	Report to: (if different than Project Manager)				Report Information - Data Deliverables	Date Rec'd in Lab: 7/3
Date/Time: di gu 7/3/08 17:50 Se 7/3/08 17:50 Se	2 8 P			X	Controller TO. 14A by TO. 1 TO. 15 SIM FIXED GASES TO. 13A TO. 4/TO. 10 Gas	5	ANALYSIS		Regulatory Requ	ia Indicated)	Same as Client info		ALPHA Job #: LO&O98 98
clock will not start until any ambi- guities are resolved. All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time				Sample Comments (i.e. PID)				Regulatory Requirements/Report Limits State/Fed Program Criteria		o PO #:	on	60809898

ANALYTICAL REPORT

Lab Number:	L0809960
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN:	Kate Leblanc
Project Name:	WAYLAND TOWN CNT.
Project Number:	12069-054
Report Date:	07/14/08

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

 Project Name:
 WAYLAND TOWN CNT.
 Lab Number:
 L0809960

 Project Number:
 12069-054
 Report Date:
 07/14/08

Alpha Sample ID	Client ID	Sample Location
L0809960-01	SV-11	WAYLAND, MA
L0809960-02	SV-12	WAYLAND, MA
L0809960-03	SV-13	WAYLAND, MA

Project Name:WAYLAND TOWN CNT.Project Number:12069-054

 Lab Number:
 L0809960

 Report Date:
 07/14/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

TO-15

L0809960-01 required re-analysis on a 5x dilution in order to quantitate the sample within the calibration range. The result is reported as a "greater than" value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the calibration range. L0809960-03 and WG328755-4 Duplicate have elevated detection limits due to the 2x dilution required by the elevated concentrations of target compounds in the sample.

Fixed Gas - Helium

L0809960-03: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Nitrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kathle M. Marin

Title: Technical Director/Representative

Date: 07/14/08

AIR

07140808:22

L0809960

07/14/08

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

SAMPLE RESULTS

Date Collected:07/03/08 10:55Date Received:07/07/08Field Prep:Not Specified

Lab Number:

Report Date:

Lab ID:	L0809960-01
Client ID:	SV-11
Sample Location:	WAYLAND, MA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	07/10/08 21:03
Analyst:	AR

	ppbV	ppbV		5		Dilution			
Parameter	Results	RDL	Results	RDL	Qualifier	Factor			
Low Level Volatile Organic Compounds in Air									
1,1,1-Trichloroethane	4.63	0.200	25.2	1.09		1			
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1			
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1			
1,1-Dichloroethane	ND	0.200	ND	0.809		1			
1,1-Dichloroethene	ND	0.200	ND	0.792		1			
1,2,4-Trichlorbenzene	ND	0.200	ND	1.48		1			
1,2,4-Trimethylbenzene	0.214	0.200	1.05	0.982		1			
1,2-Dibromoethane	ND	0.200	ND	1.54		1			
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1			
1,2-Dichloroethane	ND	0.200	ND	0.809		1			
1,2-Dichloropropane	ND	0.200	ND	0.924		1			
1,3,5-Trimethybenzene	ND	0.200	ND	0.982		1			
1,3-Butadiene	ND	0.200	ND	0.442		1			
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1			
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1			
1,4-Dioxane	ND	0.200	ND	0.720		1			
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1			
2-Butanone	5.11	0.200	15.0	0.589		1			
2-Hexanone	1.28	0.200	5.24	0.819		1			
3-Chloropropene	ND	0.200	ND	0.626		1			
4-Ethyltoluene	ND	0.200	ND	0.982		1			
Acetone	18.4	0.500	43.6	1.19		1			
Benzene	ND	0.200	ND	0.638		1			
Benzyl chloride	ND	0.200	ND	1.03		1			
Bromodichloromethane	ND	0.200	ND	1.34		1			

Project Number: 12069-054

07140808:22

07/14/08

Lab Number: L0809960

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0809960-01 SV-11 WAYLAND, MA				Date Field	Collected: Received: Prep:	07/03/0 07/07/0 Not Sp	8
		ppbV		ug/m3		Qualifian	Dilution Factor	
Parameter	Organic Compounds	Results	RDL	Results	RDL	Qualifier		
	Organic Compounds							
Bromoform		ND	0.200	ND	2.06		1	
Bromomethane		ND	0.200	ND	0.776		1	
Carbon disulfide		ND	0.200	ND	0.622		1	
Carbon tetrachloride		ND	0.200	ND	1.26		1	
Chlorobenzene		ND	0.200	ND	0.920		1	
Chloroethane		ND	0.200	ND	0.527		1	
Chloroform		1.05	0.200	5.11	0.976		1	
Chloromethane		ND	0.200	ND	0.413		1	
cis-1,2-Dichloroethene		ND	0.200	ND	0.792		1	
cis-1,3-Dichloropropene		ND	0.200	ND	0.907		1	
Cyclohexane		ND	0.200	ND	0.688		1	
Dibromochloromethane		ND	0.200	ND	1.70		1	
Dichlorodifluoromethane	9	0.962	0.200	4.75	0.988		1	
Ethanol		8.26	2.50	15.6	4.71		1	
Ethyl Acetate		ND	0.500	ND	1.80		1	
Ethylbenzene		ND	0.200	ND	0.868		1	
Freon-113		0.252	0.200	1.93	1.53		1	
Freon-114		ND	0.200	ND	1.40		1	
Hexachlorobutadiene		ND	0.200	ND	2.13		1	
Isopropanol		1.48	0.500	3.64	1.23		1	
Methylene chloride		0.943	0.500	3.27	1.74		1	
4-Methyl-2-pentanone		0.240	0.200	0.982	0.819		1	
Methyl tert butyl ether		ND	0.200	ND	0.720		1	
p/m-Xylene		0.680	0.400	2.95	1.74		1	
o-Xylene		0.080	0.200	1.04	0.868		1	
Heptane		0.240 ND		ND			1	
n-Hexane			0.200		0.819			
		0.558	0.200	1.97	0.704		1	
Propylene		ND	0.200	ND	0.344		1	

Project Number: 12069-054

07140808:22

07/14/08

Lab Number: L0809960

Report Date:

SAMPLE RESULTS

Lab ID:L0809960-01Client ID:SV-11Sample Location:WAYLAND, MA						Collected: Received: Prep:	07/03/0 07/07/0 Not Sp	
		ppbV		ug/m3	ug/m3		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	0.200	ND	0.851		1	
Tetrachloroethene		4.79	0.200	32.5	1.36		1	
Tetrahydrofuran		0.813	0.200	2.39	0.589		1	
Toluene		0.888	0.200	3.34	0.753		1	
trans-1,2-Dichloroethene	9	ND	0.200	ND	0.792		1	
trans-1,3-Dichloroproper	ne	ND	0.200	ND	0.907		1	
Trichloroethene		1.64	0.200	8.83	1.07		1	
Trichlorofluoromethane		>100	0.2	>561	1.12		1	
Vinyl acetate		ND	0.200	ND	0.704		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511		1	

							07140808:2	2
Project Name:	WAYLAND TOWN	CNT.			Lab	Number:	L080996	60
Project Number:	12069-054				Repo	ort Date:	07/14/08	5
		S	AMPLE RE	SULTS				
Lab ID: Client ID: Sample Location: Matrix: Anaytical Method: Analytical Date: Analyst:	L0809960-01 R SV-11 WAYLAND, MA Soil_Vapor 48,TO-15 07/11/08 05:01 AR				Date	Collected: Received: Prep:	07/03/0 07/07/0 Not Spe	
		ppbV	/	ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air						
Trichlorofluoromethane		151	1.00	847	5.61		5	

07140808:22

L0809960

07/14/08

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

SAMPLE RESULTS

Date Collected:07/03/08 11:20Date Received:07/07/08Field Prep:Not Specified

Lab Number:

Report Date:

Lab ID:	L0809960-02
Client ID:	SV-12
Sample Location:	WAYLAND, MA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	07/10/08 21:39
Analyst:	AR

	ppbV	ppbV		ug/m3		Dilution			
Parameter	Results	RDL	Results	RDL	Qualifier	Factor			
Low Level Volatile Organic Compounds in Air									
1,1,1-Trichloroethane	0.426	0.200	2.32	1.09		1			
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1			
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1			
1,1-Dichloroethane	ND	0.200	ND	0.809		1			
1,1-Dichloroethene	ND	0.200	ND	0.792		1			
1,2,4-Trichlorbenzene	ND	0.200	ND	1.48		1			
1,2,4-Trimethylbenzene	0.267	0.200	1.31	0.982		1			
1,2-Dibromoethane	ND	0.200	ND	1.54		1			
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1			
1,2-Dichloroethane	ND	0.200	ND	0.809		1			
1,2-Dichloropropane	ND	0.200	ND	0.924		1			
1,3,5-Trimethybenzene	ND	0.200	ND	0.982		1			
1,3-Butadiene	ND	0.200	ND	0.442		1			
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1			
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1			
1,4-Dioxane	ND	0.200	ND	0.720		1			
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1			
2-Butanone	5.44	0.200	16.0	0.589		1			
2-Hexanone	1.44	0.200	5.88	0.819		1			
3-Chloropropene	ND	0.200	ND	0.626		1			
4-Ethyltoluene	ND	0.200	ND	0.982		1			
Acetone	21.6	0.500	51.3	1.19		1			
Benzene	0.310	0.200	0.990	0.638		1			
Benzyl chloride	ND	0.200	ND	1.03		1			
Bromodichloromethane	ND	0.200	ND	1.34		1			

Project Number: 12069-054

07140808:22

07/14/08

Lab Number: L0809960

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0809960-02 SV-12 WAYLAND, MA				Date Field	Collected: Received: Prep:	07/03/08 07/07/08 Not Spe	3
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor	
Parameter	Organic Compounds		RDL	Results	KDL	Quaimer		
Bromoform		ND	0.200	ND	2.06		1	
Bromomethane		ND		ND			1	
Carbon disulfide		0.208	0.200		0.776		1	
Carbon tetrachloride		0.208 ND	0.200	0.648 ND	1.26		1	
Chlorobenzene		ND	0.200	ND	0.920		1	
Chloroethane		ND					1	
Chloroform			0.200	ND	0.527			
Chloromethane		0.938	0.200	4.57	0.976		1	
cis-1,2-Dichloroethene			0.200	0.418	0.413			
cis-1,3-Dichloropropene		ND	0.200	ND	0.792		1	
Cyclohexane		ND	0.200	ND	0.907		1	
Dibromochloromethane		ND	0.200	ND	0.688		1	
Dichlorodifluoromethane		ND	0.200	ND	1.70		1	
Ethanol		1.90	0.200	9.42	0.988		1	
		10.6	2.50	20.0	4.71		1	
Ethyl Acetate		ND	0.500	ND	1.80		1	
Ethylbenzene Freon-113		0.274	0.200	1.19	0.868		1	
		ND	0.200	ND	1.53		1	
Freon-114		ND	0.200	ND	1.40		1	
Hexachlorobutadiene		ND	0.200	ND	2.13		1	
Isopropanol		2.03	0.500	4.98	1.23		1	
Methylene chloride		1.31	0.500	4.54	1.74		1	
4-Methyl-2-pentanone		0.320	0.200	1.31	0.819		1	
Methyl tert butyl ether		ND	0.200	ND	0.720		1	
p/m-Xylene		0.918	0.400	3.98	1.74		1	
o-Xylene		0.357	0.200	1.55	0.868		1	
Heptane		0.213	0.200	0.874	0.819		1	
n-Hexane		1.32	0.200	4.66	0.704		1	
Propylene		ND	0.200	ND	0.344		1	

Project Number: 12069-054

07140808:22

07/14/08

Lab Number: L0809960

Report Date:

SAMPLE RESULTS

Lab ID:L0809960-02Client ID:SV-12Sample Location:WAYLAND, MA					Date Field	Collected: Received: Prep:	07/03/0 07/07/0 Not Sp	
Parameter		ppbV Results RDL		ug/m3 Results	RDL	Qualifier	Dilution Factor	
	Organic Compounds		NDE					
Styrene		ND	0.200	ND	0.851		1	
Tetrachloroethene		1.97	0.200	13.3	1.36		1	
Tetrahydrofuran		0.859	0.200	2.53	0.589		1	
Toluene		1.84	0.200	6.94	0.753		1	
trans-1,2-Dichloroethene)	ND	0.200	ND	0.792		1	
trans-1,3-Dichloroproper	ne	ND	0.200	ND	0.907		1	
Trichloroethene		17.9	0.200	96.4	1.07		1	
Trichlorofluoromethane		71.0	0.200	398	1.12		1	
Vinyl acetate		ND	0.200	ND	0.704		1	
Vinyl bromide		ND	0.200	ND	0.874		1	
Vinyl chloride		ND	0.200	ND	0.511		1	

07140808:22

L0809960

07/14/08

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

SAMPLE RESULTS

Date Collected:07/03/08 10:42Date Received:07/07/08Field Prep:Not Specified

Lab Number:

Report Date:

Lab ID:	L0809960-03
Client ID:	SV-13
Sample Location:	WAYLAND, MA
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	07/10/08 22:15
Analyst:	AR

	ppbV	,	ug/m:	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Com	pounds in Air					
1,1,1-Trichloroethane	0.803	0.400	4.38	2.18		2
1,1,2,2-Tetrachloroethane	ND	0.400	ND	2.74		2
1,1,2-Trichloroethane	ND	0.400	ND	2.18		2
1,1-Dichloroethane	ND	0.400	ND	1.62		2
1,1-Dichloroethene	ND	0.400	ND	1.58		2
1,2,4-Trichlorbenzene	ND	0.400	ND	2.97		2
1,2,4-Trimethylbenzene	ND	0.400	ND	1.96		2
1,2-Dibromoethane	ND	0.400	ND	3.07		2
1,2-Dichlorobenzene	ND	0.400	ND	2.40		2
1,2-Dichloroethane	ND	0.400	ND	1.62		2
1,2-Dichloropropane	ND	0.400	ND	1.85		2
1,3,5-Trimethybenzene	ND	0.400	ND	1.96		2
1,3-Butadiene	ND	0.400	ND	0.884		2
1,3-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dioxane	ND	0.400	ND	1.44		2
2,2,4-Trimethylpentane	ND	0.400	ND	1.87		2
2-Butanone	3.16	0.400	9.31	1.18		2
2-Hexanone	0.649	0.400	2.66	1.64		2
3-Chloropropene	ND	0.400	ND	1.25		2
4-Ethyltoluene	ND	0.400	ND	1.96		2
Acetone	31.3	1.00	74.4	2.37		2
Benzene	ND	0.400	ND	1.28		2
Benzyl chloride	ND	0.400	ND	2.07		2
Bromodichloromethane	ND	0.400	ND	2.68		2

Project Number: 12069-054

07140808:22

07/14/08

Lab Number: L0809960

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0809960-03 SV-13 WAYLAND, MA				Date Field	Collected: Received: Prep:	07/03/08 07/07/08 Not Spe
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor
Parameter Low Level Volatile (Drganic Compounds		RDL	Results	RDL	Quaimer	
Bromoform		ND	0.400	ND	4.13		2
Bromomethane		ND	0.400	ND			
Carbon disulfide		ND	0.400	ND	1.55		2
Carbon tetrachloride		ND	0.400	ND	1.24 2.51		2
Chlorobenzene		ND	0.400	ND	1.84		2
Chloroethane							
Chloroform		ND 1.77	0.400	ND 8.62	1.05		2
Chloromethane							
cis-1,2-Dichloroethene		ND	0.400	ND	0.825		2
cis-1,3-Dichloropropene		ND	0.400	ND	1.58		2
		ND	0.400	ND	1.81		2
Cyclohexane Dibromochloromethane		ND	0.400	ND	1.38		2
		ND	0.400	ND	3.40		2
Dichlorodifluoromethane		2.90	0.400	14.3	1.98		2
Ethanol		7.29	5.00	13.7	9.41		2
Ethyl Acetate		ND	1.00	ND	3.60		2
Ethylbenzene		ND	0.400	ND	1.74		2
Freon-113		ND	0.400	ND	3.06		2
Freon-114		ND	0.400	ND	2.79		2
Hexachlorobutadiene		ND	0.400	ND	4.26		2
Isopropanol		1.55	1.00	3.81	2.46		2
Methylene chloride		1.17	1.00	4.07	3.47		2
4-Methyl-2-pentanone		ND	0.400	ND	1.64		2
Methyl tert butyl ether		ND	0.400	ND	1.44		2
o/m-Xylene		ND	0.800	ND	3.47		2
o-Xylene		ND	0.400	ND	1.74		2
Heptane		ND	0.400	ND	1.64		2
n-Hexane		ND	0.400	ND	1.41		2
Propylene		ND	0.400	ND	0.688		2

Project Number: 12069-054

07140808:22

07/14/08

Lab Number: L0809960

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0809960-03 SV-13 WAYLAND, MA				Date	Collected: Received: Prep:	07/03/0 07/07/0 Not Sp	
		ppbV	1	ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	0.400	ND	1.70		2	
Tetrachloroethene		8.74	0.400	59.3	2.71		2	
Tetrahydrofuran		0.551	0.400	1.62	1.18		2	
Toluene		0.856	0.400	3.22	1.51		2	
trans-1,2-Dichloroethene	9	ND	0.400	ND	1.58		2	
trans-1,3-Dichloroproper	ne	ND	0.400	ND	1.81		2	
Trichloroethene		14.8	0.400	79.7	2.15		2	
Trichlorofluoromethane		61.5	0.400	345	2.24		2	
Vinyl acetate		ND	0.400	ND	1.41		2	
Vinyl bromide		ND	0.400	ND	1.75		2	
Vinyl chloride		ND	0.400	ND	1.02		2	

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/10/08 16:45

Project Number: 12069-054

	pb/	V		ug/m	3		Dilution
Parameter	Results	RDL		Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for s	sample(s):	01-03	Batch: V	/G328755-3		
1,1,1-Trichloroethane	ND	0.200		ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		1
1,1,2-Trichloroethane	ND	0.200		ND	1.09		1
1,1-Dichloroethane	ND	0.200		ND	0.809		1
1,1-Dichloroethene	ND	0.200		ND	0.792		1
1,2,4-Trichlorbenzene	ND	0.200		ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.982		1
1,2-Dibromoethane	ND	0.200		ND	1.54		1
1,2-Dichlorobenzene	ND	0.200		ND	1.20		1
1,2-Dichloroethane	ND	0.200		ND	0.809		1
1,2-Dichloropropane	ND	0.200		ND	0.924		1
1,3,5-Trimethybenzene	ND	0.200		ND	0.982		1
1,3-Butadiene	ND	0.200		ND	0.442		1
1,3-Dichlorobenzene	ND	0.200		ND	1.20		1
1,4-Dichlorobenzene	ND	0.200		ND	1.20		1
1,4-Dioxane	ND	0.200		ND	0.720		1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934		1
2-Butanone	ND	0.200		ND	0.589		1
2-Hexanone	ND	0.200		ND	0.819		1
3-Chloropropene	ND	0.200		ND	0.626		1
4-Ethyltoluene	ND	0.200		ND	0.982		1
Acetone	ND	0.500		ND	1.19		1
Benzene	ND	0.200		ND	0.638		1
Benzyl chloride	ND	0.200		ND	1.03		1
Bromodichloromethane	ND	0.200		ND	1.34		1

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/10/08 16:45

Project Number: 12069-054

	ppbV			ug/m3			Dilution
Parameter	Results	RDL		Results	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for sa	ample(s):	01-03	Batch: W	/G328755-3		
Bromoform	ND	0.200		ND	2.06		1
Bromomethane	ND	0.200		ND	0.776		1
Carbon disulfide	ND	0.200		ND	0.622		1
Carbon tetrachloride	ND	0.200		ND	1.26		1
Chlorobenzene	ND	0.200		ND	0.920		1
Chloroethane	ND	0.200		ND	0.527		1
Chloroform	ND	0.200		ND	0.976		1
Chloromethane	ND	0.200		ND	0.413		1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200		ND	0.907		1
Cyclohexane	ND	0.200		ND	0.688		1
Dibromochloromethane	ND	0.200		ND	1.70		1
Dichlorodifluoromethane	ND	0.200		ND	0.988		1
Ethanol	ND	2.50		ND	4.71		1
Ethyl Acetate	ND	0.500		ND	1.80		1
Ethylbenzene	ND	0.200		ND	0.868		1
Freon-113	ND	0.200		ND	1.53		1
Freon-114	ND	0.200		ND	1.40		1
Hexachlorobutadiene	ND	0.200		ND	2.13		1
Isopropanol	ND	0.500		ND	1.23		1
Methylene chloride	ND	0.500		ND	1.74		1
4-Methyl-2-pentanone	ND	0.200		ND	0.819		1
Methyl tert butyl ether	ND	0.200		ND	0.720		1
p/m-Xylene	ND	0.400		ND	1.74		1
o-Xylene	ND	0.200		ND	0.868		1

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/10/08 16:45

Project Number: 12069-054

	рр	bV		ug	/m3		Dilution
Parameter	Results	RDL	Re	sults	RDL	Qualifier	Factor
Low Level Volatile Organic Compounds	in Air for	sample(s):	01-03 Bat	tch:	WG328755-3		
Heptane	ND	0.200		ND	0.819		1
n-Hexane	ND	0.200		ND	0.704		1
Propylene	ND	0.200		ND	0.344		1
Styrene	ND	0.200		ND	0.851		1
Tetrachloroethene	ND	0.200		ND	1.36		1
Tetrahydrofuran	ND	0.200		ND	0.589		1
Toluene	ND	0.200		ND	0.753		1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792		1
trans-1,3-Dichloropropene	ND	0.200		ND	0.907		1
Trichloroethene	ND	0.200		ND	1.07		1
Trichlorofluoromethane	ND	0.200		ND	1.12		1
Vinyl acetate	ND	0.200		ND	0.704		1
Vinyl bromide	ND	0.200		ND	0.874		1
Vinyl chloride	ND	0.200		ND	0.511		1

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054 Lab Number: L0809960 Report Date: 07/14/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds in Ai	ir Associated sample(s):	01-03 Batch:	WG328755-2		
1,1,1-Trichloroethane	104	-	70-130	-	
1,1,2,2-Tetrachloroethane	113	-	70-130	-	
1,1,2-Trichloroethane	111	-	70-130	-	
1,1-Dichloroethane	103	-	70-130	-	
1,1-Dichloroethene	90	-	70-130	-	
1,2,4-Trichlorobenzene	117	-	70-130	-	
1,2,4-Trimethylbenzene	110	-	70-130	-	
1,2-Dibromoethane	105	-	70-130	-	
1,2-Dichlorobenzene	106	-	70-130	-	
1,2-Dichloroethane	109	-	70-130	-	
1,2-Dichloropropane	116	-	70-130	-	
1,3,5-Trimethylbenzene	108	-	70-130	-	
1,3-Butadiene	94	-	70-130	-	
1,3-Dichlorobenzene	107	-	70-130	-	
1,4-Dichlorobenzene	109	-	70-130	-	
1,4-Dioxane	105	-	70-130	-	
2,2,4-Trimethylpentane	115	-	70-130	-	
2-Butanone	99	-	70-130	-	
2-Hexanone	122	-	70-130	-	
3-Chloropropene	108	-	70-130	-	
4-Ethyltoluene	106	-	70-130	-	

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054 Lab Number: L0809960 Report Date: 07/14/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ow Level Volatile Organic Compounds in Ai	r Associated sample(s):	01-03 Batch:	WG328755-2		
Acetone	100	-	70-130	-	
Benzene	107	-	70-130	-	
Benzyl chloride	108	-	70-130	-	
Bromodichloromethane	112	-	70-130	-	
Bromoform	106	-	70-130	-	
Bromomethane	79	-	70-130	-	
Carbon disulfide	89	-	70-130	-	
Carbon tetrachloride	99	-	70-130	-	
Chlorobenzene	115	-	70-130	-	
Chloroethane	90	-	70-130	-	
Chloroform	102	-	70-130	-	
Chloromethane	90	-	70-130	-	
cis-1,2-Dichloroethene	103	-	70-130	-	
cis-1,3-Dichloropropene	109	-	70-130	-	
Cyclohexane	100	-	70-130	-	
Dibromochloromethane	106	-	70-130	-	
Dichlorodifluoromethane	88	-	70-130	-	
Ethyl Alcohol	111	-	70-130	-	
Ethyl Acetate	114	-	70-130	-	
Ethylbenzene	112	-	70-130	-	
1,1,2-Trichloro-1,2,2-Trifluoroethane	89	-	70-130	-	

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054 Lab Number: L0809960 Report Date: 07/14/08

arameter	LCS %Recovery		CSD covery	%Recovery Limits	RPD	RPD Limits
w Level Volatile Organic Compounds in Air	Associated sample(s):	01-03	Batch:	WG328755-2		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	92		-	70-130	-	
Hexachlorobutadiene	101		-	70-130	-	
iso-Propyl Alcohol	108		-	70-130	-	
Methylene chloride	94		-	70-130	-	
4-Methyl-2-pentanone	118		-	70-130	-	
Methyl tert butyl ether	101		-	70-130	-	
p/m-Xylene	110		-	70-130	-	
o-Xylene	113		-	70-130	-	
Heptane	110		-	70-130	-	
n-Hexane	103		-	70-130	-	
Propylene	92		-	70-130	-	
Styrene	109		-	70-130	-	
Tetrachloroethene	106		-	70-130	-	
Tetrahydrofuran	119		-	70-130	-	
Toluene	117		-	70-130	-	
trans-1,2-Dichloroethene	94		-	70-130	-	
trans-1,3-Dichloropropene	101		-	70-130	-	
Trichloroethene	106		-	70-130	-	
Trichlorofluoromethane	87		-	70-130	-	
Vinyl acetate	120		-	70-130	-	
Vinyl bromide	89		-	70-130	-	

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

 Lab Number:
 L0809960

 Report Date:
 07/14/08

Parameter	LCS %Recovery		CSD covery	%Recovery Limits	RPD	RPD Limits
Low Level Volatile Organic Compounds in Air	Associated sample(s):	01-03	Batch:	WG328755-2		
Vinyl chloride	92		-	70-130	-	
2,4,4-Trimethyl-2-Pentene	115		-	70-130	-	
2,4,4-Trimethyl-1-Pentene	115		-	70-130	-	

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

Lab Number:

L0809960 07/14/08 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air	Associated sample(s): 01-03	QC Batch ID: WG328755-4	QC Sample:	L0809960-03	Client ID: SV-13
1,1,1-Trichloroethane	0.803	0.830	ppbV	3	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
1,2,4-Trichlorbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
1,3,5-Trimethybenzene	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
2-Butanone	3.16	3.16	ppbV	0	25
2-Hexanone	0.649	0.725	ppbV	11	25

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

Lab Number:

 Lab Number:
 L0809960

 Report Date:
 07/14/08

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
w Level Volatile Organic Compounds in Air	Associated sample(s): 01-03	QC Batch ID: WG328755-4	QC Sample:	L0809960-03	Client ID: SV-13
3-Chloropropene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
Acetone	31.3	31.6	ppbV	1	25
Benzene	ND	ND	ppbV	NC	25
Benzyl chloride	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Carbon disulfide	ND	ND	ppbV	NC	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Chloroform	1.77	1.80	ppbV	2	25
Chloromethane	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
Dichlorodifluoromethane	2.90	2.96	ppbV	2	25

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

Lab Number:

L0809960 07/14/08 Report Date:

rameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
w Level Volatile Organic Compounds in Air As	ssociated sample(s): 01-03	QC Batch ID: WG328755-4	QC Sample:	L0809960-03	Client ID: SV-13
Ethanol	7.29	7.86	ppbV	8	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
Freon-113	ND	ND	ppbV	NC	25
Freon-114	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
Isopropanol	1.55	1.54	ppbV	1	25
Methylene chloride	1.17	1.15	ppbV	2	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
p/m-Xylene	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
Heptane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
Propylene	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
Tetrachloroethene	8.74	8.68	ppbV	1	25
Tetrahydrofuran	0.551	0.663	ppbV	18	25
Toluene	0.856	0.759	ppbV	12	25

Project Name: WAYLAND TOWN CNT.

Project Number: 12069-054

Lab Number:

L0809960 07/14/08 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
ow Level Volatile Organic Compounds in Air Assoc	ciated sample(s): 01-03	QC Batch ID: WG328755-4	QC Sample:	L0809960-03	Client ID: SV-13
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Trichloroethene	14.8	14.7	ppbV	1	25
Trichlorofluoromethane	61.5	62.0	ppbV	1	25
Vinyl acetate	ND	ND	ppbV	NC	25
Vinyl bromide	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25

				07140808:22
Project Name:	WAYLAND TOWN CNT.		Lab Number:	L0809960
Project Number:	12069-054		Report Date:	07/14/08
		SAMPLE RESULTS		
Lab ID:	L0809960-03		Date Collected:	07/03/08 10:42
Client ID:	SV-13		Date Received:	07/07/08
Sample Location:	WAYLAND, MA		Field Prep:	Not Specified
Matrix:	Soil_Vapor		Extraction Method:	
Anaytical Method:	51,3C(M)			
Analytical Date:	07/11/08 17:20			
Analyst:	RY			

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Fixed Gases by GC					
Helium	0.019		%	0.016	1.575

Project Name:	WAYLAND TOWN CNT.	Lab Number:	L0809960
Project Number:	12069-054	Report Date:	07/14/08
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	51,3C(M)
Analytical Date:	07/11/08 17:00
Analyst:	RY

Parameter	Result	Qualifier	Units	RDL
Fixed Gases by GC for sample(s):	03 Batch:	WG328810-2		
Helium	ND		%	0.010

Lab Control Sample Analysis

Project Name:	WAYLAND TOWN CNT.	Batch Quality Control	Lab Number:	L0809960
Project Number:	12069-054		Report Date:	07/14/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Fixed Gases by GC Associated sample(s):	03 Batch: WG328810-1				
Helium	93	-	80-120	-	

07140808:22

Project Name: Project Number:	WAYLAND TOWN CN 12069-054		ab Duplicate Analy Batch Quality Control		Number: ort Date:	L0809960 07/14/08	
Parameter		Native Sample	Duplicate Sample	Units	RPD	RPD	Limits
Fixed Gases by GC Ass	ociated sample(s): 03	QC Batch ID: WG328810-3	QC Sample: L0809960-0	3 Client ID:	SV-13		
Helium		0.019	0.019	%	0		5

. .

Report Date: 07/14/08

Project Number: 12069-054

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L0809960-01	SV-11	0098	#16 SV		-	-	40	42	5
L0809960-01	SV-11	490	2.7L Can	L0809159-01	-29.4	-0.9	-	-	-
L0809960-02	SV-12	0336	#30 SV		-	-	37	38	3
L0809960-02	SV-12	184	2.7L Can	L0809159-01	-29.4	0.1	-	-	-
L0809960-03	SV-13	0243	#30 SV		-	-	33	36	9
L0809960-03	SV-13	136	2.7L Can	L0809159-01	-29.4	-0.1	-	-	-

07140808:22

Project Name:WAYLAND TOWN CNT.Project Number:12069-054

Lab Number: L0809960 Report Date: 07/14/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
N/A	Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0809960-01A	Canister - 2.7 Liter	N/A	NA	N/A	NA	Absent	TO15-LL
L0809960-02A	Canister - 2.7 Liter	N/A	NA	N/A	NA	Absent	TO15-LL
L0809960-03A	Canister - 2.7 Liter	N/A	NA	N/A	NA	Absent	FIXGAS-HE,TO15-LL

Project Number: 12069-054

Lab Number: L0809960 Report Date: 07/14/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 51 Determination of Carbon Dioxide, Methane, Nitrogen and Oxygen from Stationary Sources. Method 3C. Appendix A, Part 60, 40 CFR (Code of Federal Regulations). June 20, 1996.

LIMITATION OF LIABILITIES

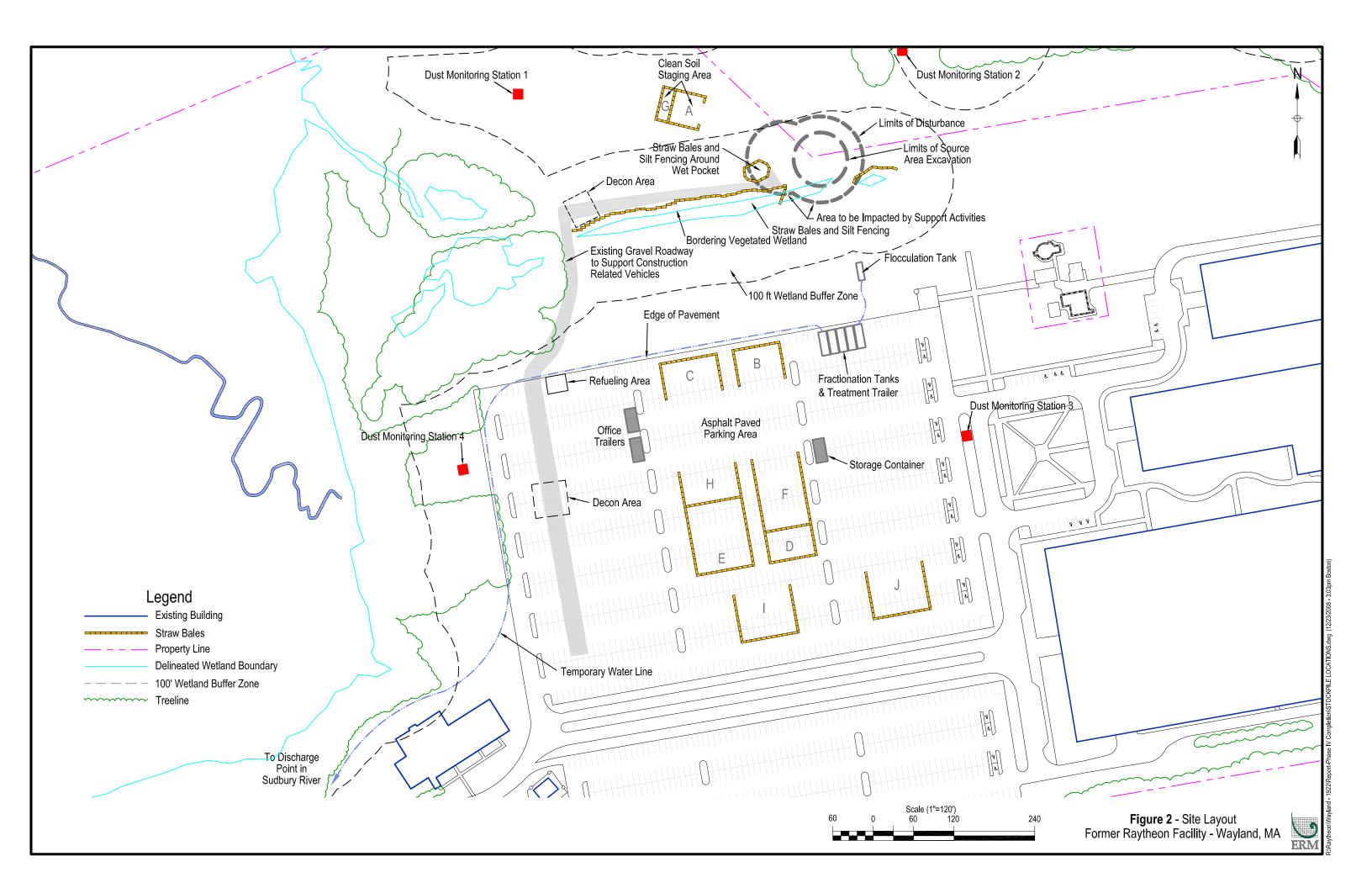
Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

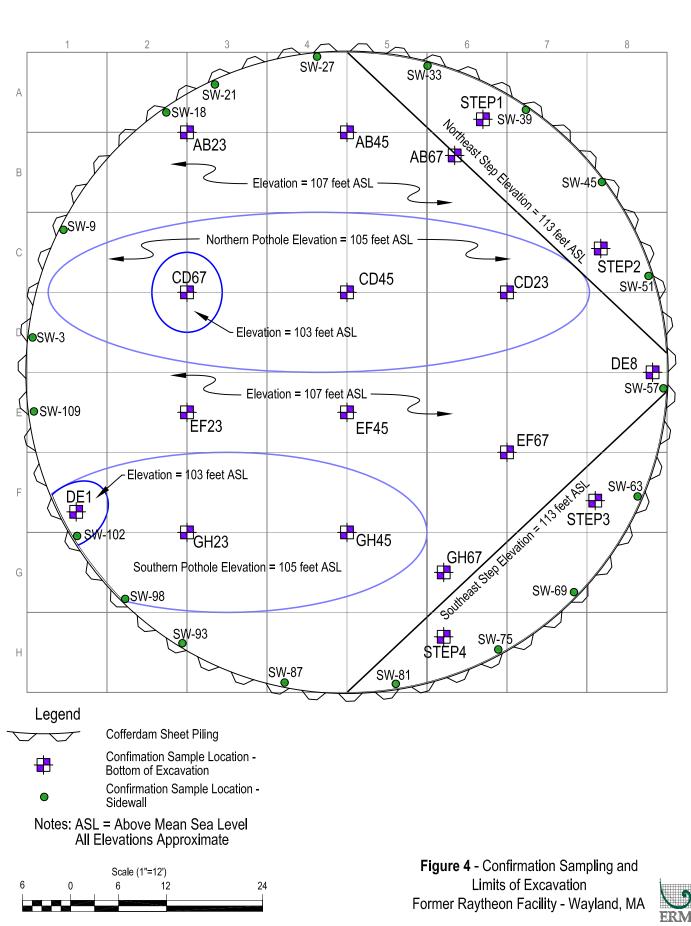
We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

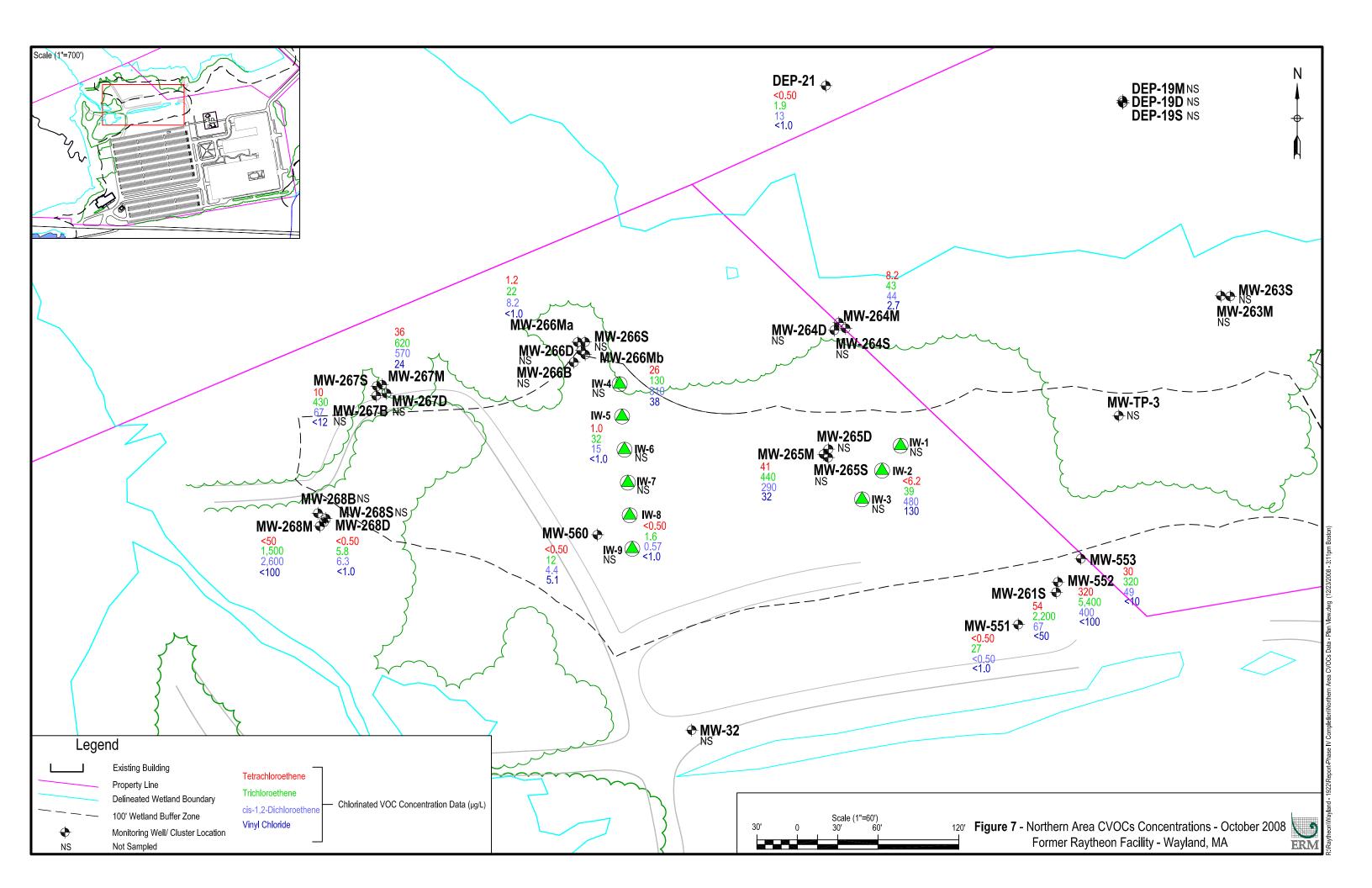
			 	 	Pallor	 T i stàr	1 								····· 1			40808			
Form No: 101-02 (rev.1-Feb-08)		*SAMPLE MATRIX CODES				J SI	2 52	9960.1 54	ALPHA Lab ID (Lab Use Only)		Other Project Specific Requirements/Comments:	These samples have been previously analyzed by Alpha	Email:	Fax:	W	Soctor	JEILY	Client Information	TEL: 508-822-9300 FAX: 508-822-3288	320 Eaches Blvd Mansfield MA 02048	
(fa		NX CODES				1-13	1-12	1-11	Sample ID	AII	Requirements/Co	viously analyzed by Alp			696-2400		FADRICH		08-822-3288	CHAIN OF CUSTODY	AIR /
ul Silbut	Relinquisted By:	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Press Specify				0925	" 1010	7-3 0945	Date Start Time	Columns E	mments:	ha Date Due: 504	10 DAYS		Turn-Around Time	ALPHA Quote #:	Project Manager:	Project Location: WAY/AND	Project Name:	Y Project Information	AIR ANALYSIS
Balt/L	Date/Time	r/Outdoor) Gas/SVE			-	1092-32 -	1120 -29 -	1053-30-	Collection Initial Final Start Time End Time Vacuum Vacuum	Below Must		AV Time:	RUSH (only confirmed if pre-approved!)		ne	1	Project Manager: K, K-8/ANC	1AY/AND AVE	Project Name: WAYLAND TOWN Cut	ion	PAGE OF
1 1111 01-81	1 2 1					2 4 "	1 4	2 SV CA	inal Sample Sampler's cuum Matrix* Initials	Be Filled	(-		R and		Report to: (#c	Additiona	D EMAIL (s		1	Report Info	/ Date Rec'd i
[miller	Received By:	Container Type	 			W 136	· 184	FT 2.72 490 6	Can I D Size Can	Out		And the second second	telium hi		(if different than Project Manager)	Additional Deliverables:	Other Formats: //AIL (standard pdf report)	Criteria Checker:		nformation - Data De	1 in Lab: 7/1/08
1100 C	Date/Time:	8				243 X	336 X	0098 X	10 - Flow 70 70 70 70 70 70 70 70 70 70 70 70 70	A by TO	0-15		MoTh 34			State		a Indicated)		Data Deliverables Bill	
(81.0 See reverse side	1	CS Please pri completet				×			FIXEL TO J		He	/ / isa	ANALYSIS			State/Fed Program	Regulatory Requirements/Report Limits		Same as Client info PO	Billing Information	ALPHA Job #: (68
suomited are subject to Alpha's Terms and Conditions. See reverse side	clock will not start until any ambi- guities are resolved. All samples	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time						~	Comments (i.e. PID)							Criteria	ents/Report Limits		0.#		6809960

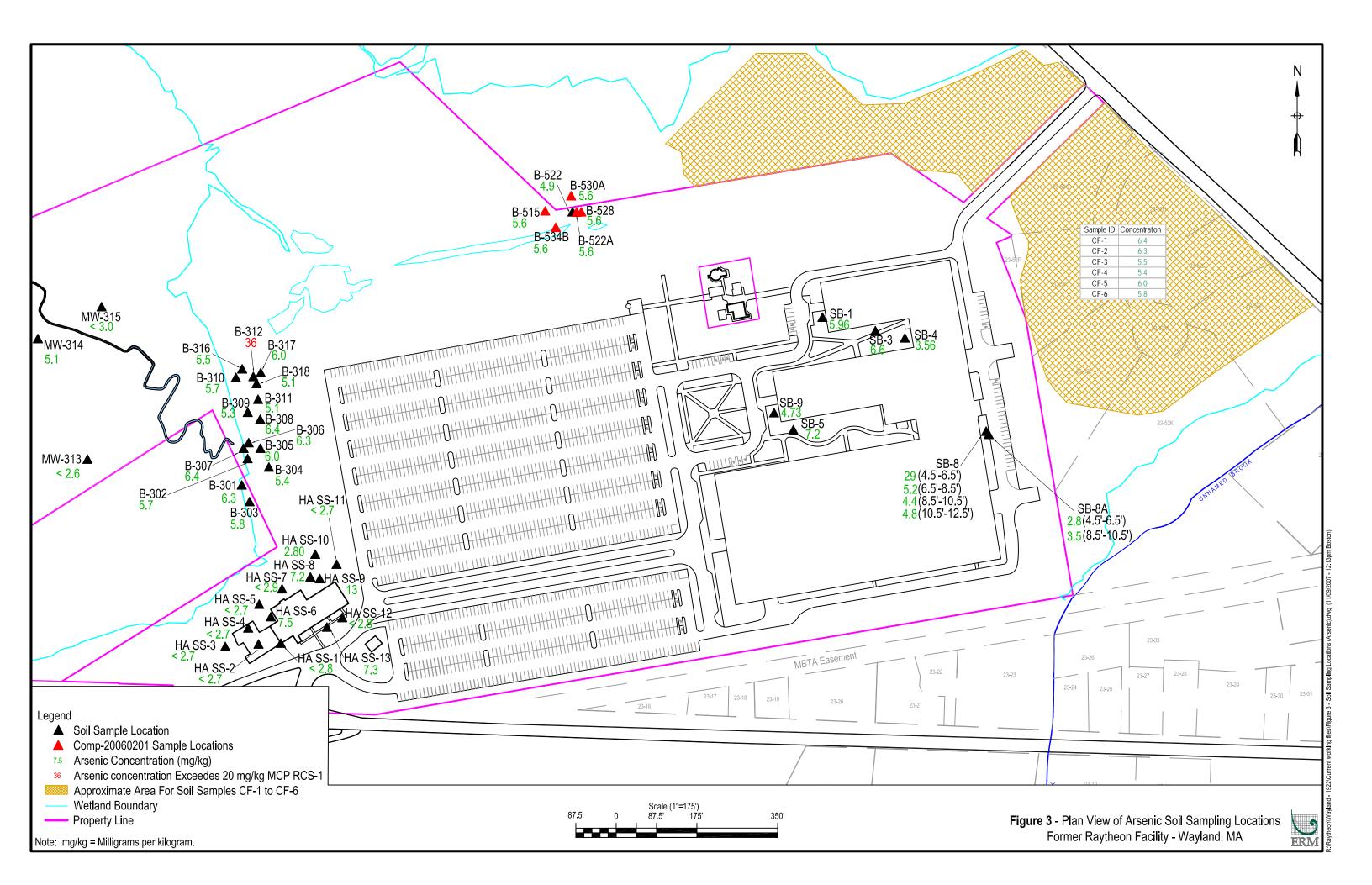
Form No: 101-02 (rev.1-Feb-08)				*SAMPLE MATRIX CODES				J SV-13	L SV-12	9960.1 SU-11	ALPHA Lab ID (Lab Use Only) Sample ID			Other Project Specific Requirements/Comments:	These samples have been previously analyzed by Alpha	Email:	Fax:	Phone: 617 886-2400	BOSTON MA	Address: 465 MEDFORD ST.	Client: HAVEN EALDENCH	Client Information	TEL: 508-822-9300 FAX: 508-822-3288	ans	AIR A
11 montras	lears - + - + + + + + + + + + + + + + + + +		Rekinquisted By: Date/Time	AA = Ambient Aır (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Othe = Please Specify				" 0925-1092-32-2	" 1010 1120 -27 -2	7-3 0945 1055-30-2	Date Start Time End Time Vacuum Vacuum	All Columns Below Must Be Filled			Date Due: JAN Time:	U Standard U RUSH (only confirmed if pre-approved!) 10 DAYS		Turn-Around Time	ALPHA Quote #:	Project Manager: K, Keg/ANC	Project #: 12069-05-9	Project Location: WAV/AND AVE	Project Name: WAYLAND Town Cui	Project Information	AIR ANALYSIS PAGE (OF /
	1 CH Harris VIII 1		A Received By:	Container Type				V " " 136 2.43 X	1 4 · 187 336 X	SV 251 2.72 490 0098 X	Sample Sampler's Can ID ID - Flow 0	Out	70.15	LIVAU UNAVI)		P. italian L. Math. 12		Report to: (if different than Project Manager)	Additional Deliverables:	EMAIL (standard pdf report)	(Default based on Regulatory Criteria Indicated)	Criteria Checker:	┤	Report Information - Data Deliverables	- Date Rec'd in Lab: $7/7/08$
V (2) V See reverse side	1010	ž	Date/Time: clock will not start until any ambi-	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time				×			APH FIXE	5 SIM) Es			ANA			State/Fed Program Criteria	ory Requirements/Re			Same as Client info PO #:	Billing Information	ALPHA Job #: 6809960

DRAFT


APPENDIX B ERM WELL LOCATION PLAN






(

DRAFT

APPENDIX C METHOD 3 RISK CHARACTERIZATION

Environmental

Air Quality

Construction Worker - Soil: Table CW-1 Exposure Point Concentration (EPC) and Risk Based on Construction Worker 18-25 years of age

430 Boston Post Road, Wayland, MA

ShortForm Version 08-08

RTN 3-13302

Vlookup Version v0808

ELCR (all chemicals) = 2E-07 HI (all chemicals) = 1E-01

Oil or Hazardous	EPC	ELCR	ELCR	ELCR	ELCR		Subchronic				
Material (OHM)	(ing/kg)	ingention	Etti-dermal	inhatation Gi	Inhalation pulmonary	ELCR _{total}	HQing	HQ _{derm}	HQ _{inh-Gi}	HQinh	ESHQ total
Tetrachloroethylene	3.2E-02	1.4E-11	1.4E-11	3.7E-13	8.5E-14	2.9E-11	3.9E-07	4.0E-07	1.0E-08	2.6E-10	8.0E-07
Trichloroethylene	6.2E-02	6.0E-12	6.0E-12	1.5E-13	2.8E-14	1.2E-11	3.8E-06	3.8E-06	9.9E-08	1.3E-08	7.7E-06
Dichloroethylene, cis-1,2-	3.8E-02						4.7E-07	4.8E-07	1.2E-08	4.1E-08	1.0E-06
Dichloroethylene, trans-1,2-	1.2E-03						7.4E-09	7.4E-09	1.9E-10	6.4E-11	1.5E-08
Toluene	1.2E-03						1.8E-09	2.2E-09	4.8E-11	8.9E-12	4.1E-09
Acetone	2.7E-02						1.2E-08	1.2E-08	3.2E-10	1.2E-09	2.6E-08
Chlorobenzene	5.6E-03						3.4E-08	3.5E-08	8.9E-10	1.0E-08	8.1E-08
Dichlorobenzene, 1,4- (p-DCB)	7.8E-03	1.6E-12	1.7E-12	4.2566E-14	1.419E-14	3.4E-12	1.1E-08	1.1E-08	2.8E-10	1.2E-10	2.2E-08
Aliphatics C19 to C36	3.3E+01						6.7E-06	6.7E-06	1.7E-07		1.4E-05
Aromatics C11 to C22	1.4E+01						2.1E-05	5.8E-05	5.4E-07	1.1E-06	8.1E-05
Arsenic	6.6E+00	8.7E-08	2.6E-08	2.3E-09	7.5E-09	1.2E-07	2.7E-02	8.2E-03	7.0E-04	9.8E-02	1.3E-01
Barium	2.8E+01						5.0E-04	2.5E-04	1.3E-05	2.1E-04	9.7E-04
Chromium (total)	1.15E+01				3.7E-08	3.7E-08	7.1E-04	6.4E-04	1.8E-05	1.4E-03	2.8E-03
Lead	5.90E+00						4.8E-03	5.9E-04	1.3E-04	2.2E-04	5.8E-03

Construction Worker - Soil: Table CW-2
Equations to Calculate Cancer Risk for Construction Worker

Vlookup Version v0808

Cancer Risk from Ingestion

 $ELCR_{ing} = LADD_{ing} * CSF_{oral}$

 $LADD_{ing} = \frac{EPC * IR * RAF_{c-ing} * EF * ED_{ing} * EP * C1}{BW * AP_{infertime}}$

Cancer Risk from Dermal Absorption

ELCR_{derm} = LADD_{derm} * CSF_{oral}

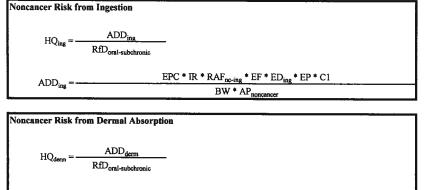
 $LADD_{derm} = \frac{EPC * SA * AF * RAF_{c-derm} * EF * ED_{derm} * EP * C1}{BW * AP_{lifetime}}$

Cancer Risk from Particulate Inhalation - Gastrointestinal Absorption

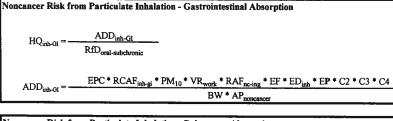
ELCR_{inh-GI} = LADD_{inh-GI} * CSF_{oral}

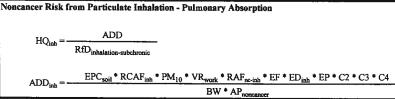
 $LADD_{inh-GI} = \underline{EPC * RCAF_{inh-gi} * PM_{10} * VR_{work} * RAF_{c-ing} * EF * ED_{inh} * EP * C2 * C3 * C4}$ BW * AP_{lifetime}

Cancer Risk from Particulate Inhalation - Pulmonary Absorption


ELCR_{inh} = LADD_{inh}* CSF_{inhalation}

 $LADD = -\frac{EPC * RCAF_{inh} * PM_{10} * VR_{work} * RAF_{e.inh} * EF * ED_{inh} * EP * C2 * C3 * C4}{BW * AP_{lifetime}}$


Parameter	Value	Units
CSF	OHM-specific	(mg/kg-day) ⁻¹
LADD	age/OHM-specific	mg/kg-day
EPC	OHM-specific	mg/kg
IR	100	mg/day
RAF _{c-ing}	OHM-specific	dimensionless
RAF _{c-derm}	OHM-specific	dimensionless
RAFo-inh	OHM-specific	dimensionless
EF	0,714	event/day
EDing & derm	1	day/event
ED _{inh}	0.333	day/event
EP	182	days
C1	1,0E-06	kg/mg
C2	1.0E-09	kg/µg
C3	1440	min/days
C4	1.0E-03	m ³ /L
BW	58.0	kg
AP(lifetime)	25,550	days
VRwork	60	L/min
AF	0.29	mg/cm ²
SA	3473	cm ² /day
RCAF _{inh-gi}	1.5	dimensionless
RCAFinh	0.5	dimensionless
PM10	60	μg/m³


Construction Worker - Soil: Table CW-3 Equations to Calculate Noncancer Risk for Construction Worker

Vlookup Version v0808

ADD_{dermal} = _____ EPC * SA * AF * RAF_{nc-derm} * EF * ED_{dermal} * EP * C1 BW * AP_{noncancer}

Parameter	Value	Units
RfD	OHM-specific	mg/kg-day
ADD	OHM-specific	mg/kg-day
EPC	OHM-specific	mg/kg
IR	100	mg/day
RAF _{nc-ing}	OHM-specific	dimensionless
RAF _{nc-derm}	OHM-specific	dimensionless
RAF _{nc-inh}	OHM-specific	dimensionless
EF	0.714	event/day
EF _{cyanide}	1	event/day
ED _{ing & derm}	1	day/event
ED _{inh}	0.333	day/event
EP	182	days
EP _{cyanide}	1.00	day
C1	1.0E-06	kg/mg
C2	1.0E-09	kg/µg
C3	1440	min/days
C4	1.0E-03	m ³ /L
BW	58.0	kg
APnoncancer	182	days
AP _{cyanide}	1 I	day
VRwork	60	L/min
AF	0.29	mg/cm ⁴
SA	3473	cm ² /day
RCAF _{inb-gi}	1.5	dimensionless
RCAFinh	0.5	dimensionless
PM10	60	μg/m ³

Construction Worker - Soil: Table CW-4 Definitions and Exposure Factors

Parameter	Value	Units	Notes
ELCR - Excess Lifetime Cancer Risk	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)
HI - Hazard Index	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)
CSF - Cancer Slope Factor	chemical specific	(mg/kg-day) ⁻¹	see Table CW-5.
RfD - Reference Dose	chemical specific	mg/kg-day	see Table CW-5.
LADD - Lifetime Average Daily Dose	chemical specific	mg/kg-day	Pathway specific. See Table CW-2.
ADD - Average Daily Dose	chemical specific	mg/kg-day	Pathway specific. See Table CW-3.
EPC - Exposure Point Concentration	chemical specific	μg/L	see Table CW-1.
IR - Soil Ingestion Rate	100	mg/day	MADEP. 2002. Technical Update: Calculation of an Enhanced Soil Ingestion Rate. (http://www.mass.gov/dep/ors/orspubs.htm).
RAF _c - Relative Absorption Factor for Cancer Effects	chemical specific	dimensionless	Pathway specific - see Table CW-5.
RAF _{nc} - Relative Absorption Factor for Noncancer Effects	chemical specific	dimensionless	Pathway specific - see Table CW-5.
EF - Exposure Frequency	0.714	event/day	5 events (days) / 7 events (days) in a week; MADEP 1995 Guidance for
			Disposal Site Risk Characterization pg B-38.
EF _{cyanide} - Exposure Frequency for Cyanide Exposures	1.00	event/day	MADEP. 1995. Guidance for Disposal Site Risk Characterization. Page 5-5.
ED _{ing,derm} - Exposure Duration for ingestion or dermal exposure	1	day/event	
ED _{inh} - Exposure Duration for inhalation exposure	0.333	day/event	Represents 8 hours / event.
EP - Exposure Period	182	days	6 months; MADEP 1995 Guidance for Disposal Site Risk Characterization.
EP _{cyanide} - Exposure period for cyanide exposure	1	day	MADEP. 1995. Guidance for Disposal Site Risk Characterization. Page 5-5
BW - Body Weight	58.0	kg	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7,
			Females, ages 18 - 25.
AP _(lifetime) - Averaging Period for lifetime	25,550	days	Represents 70 years
AP _(noncancer) - Averaging Period for noncancer	182	days	6 months; MADEP 1995 Guidance for Disposal Site Risk Characterization.
AP _{cyanide} - Averaging period for assessing cyanide exposure	1	day	MADEP. 1995. Guidance for Disposal Site Risk Characterization. Page 5-5.
AF - Adherence Factor	0.29	mg/cm ²	MA DEP. 2002 Technical Update: Weighted Skin-Soil Adherence Factors.
			(http://www.mass.gov/dep/ors/orspubs.htm)
VRwork - Ventilation Rate during work (heavy exertion)	60	L/min	Table B-4 MADEP 1995 Guidance for Disposal Site Risk Characterization.
SA - Surface Area	3473	cm ² /day	MADEP. 1995. Guidance for Disposal Site Risk Characterization.
			50th percentile for females. Appendix Table B-2.
RCAFinh-gi - Relative Concentration Adjustment Factor, gastrointestinal	1.5	dimensionless	MADEP 2007. Characterization of Risks Due to Inhalation of Particulates
PCAE Palatin Commention All A Comment			by Construction Workers
RCAF _{inh} - Relative Concentration Adjustment Factor, inhalation	0.5	dimensionless	MADEP 2002. Characterization of Risks Due to Inhalation of Particulates
PM10 - Concentration of PM ₁₀			by Construction Workers
I WITO - CONCENTRATION OF PMILO	60	μg/m'	MADEP 1995 Guidance for Disposal Site Risk Characterization pg B-11

Construction Worker - Soil: Table CW-5 Chemical-Specific Data

Oil or Hazardous Material	Orai CSF (mg/kg-day) ⁻¹	RAF _{c-ing}	RÁF _{o-denn}	RAFoinh	Inhalation CSF (mg/kg-day) ⁻¹	Subchronic Oral RfD mg/kg-day	Subchronic RAF _{sc-ing}	Subchronic RAF _{ac-derm}	Subchronic RAF _{ac-inis}	Subchronic Inhalation RfD
Tetrachloroethylene	5.1E-02	1	0.1	1	3.5E-02	1.0E-01	1	0.1	1	1.3E+00
Trichloroethylene	1.1E-02	1	0.1	1	6.0E-03	2.0E-02	1	0.1	1	5.1E-02
Dichloroethylene, cis-1,2-						1.0E-01	1	0.1	1	1.0E-02
Dichloroethylene, trans-1,2-						2.0E-01	1	0.1	1	2.0E-01
Toluene						8.0E-01	1	0.12	1	1.4E+00
Acetone						2.7E+00	1	0.1	1	2.3E-01
Chlorobenzene						2.0E-01	1	0.1	1	5.7E-03
Dichlorobenzene, 1,4- (p-DCB)	2.400E-02	1	0.1	1.00	2.4E-02	9.0E-01	1	0.1	1	6.9E-01
Aliphatics C19 to C36						6.0E+00	1	0.1		
Aromatics C11 to C22						3.0E-01	0.36	0.1	1	1.4E-01
Arsenic	1.5E+00	1	0.03	1	1.5E+01	3.0E-04	1	0.03	1	7.1E-07
Barium						7.0E-02	1	0.05	1	1.4E-03
Chromium (total)					4.2E+01	2.0E-02	1	0.09	1	8.6E-05
Lead						7.5E-04	0.5	0.006	1	2.9E-04

Trespasser - Soil: Table TS-1 Exposure Point Concentration (EPC) Based on Trespasser Ages 11-18 (Cancer and Non-Cancer)

Citt and

430 Boston Post Road, Wayland, MA

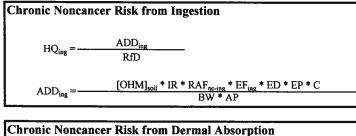
ShortForm Version 6-06

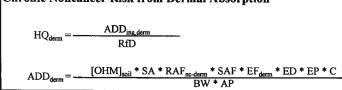
RTN 3-13302

Vlookup Version v0808

ELCR (all chemicals) = 2E-07

Chronic HI (all chemicals) = 6E-03

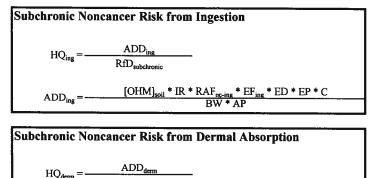

Subchronic HI (all chemicals) = 1E-02


Oilor	EPC				Chi	onic		Subo	chronic	
Hazardous Material	(mg/kg)	ELCRingestion	ELCR	ELCR _{total}	HQing	HQ _{derm}	HQtotal	HQing	HQderm	HQ _{total}
Tetrachloroethylene	3.2E-02	2.6E-11	2.2E-11	4.8E-11	5.2E-07	4.3E-07	9.5E-07	1.1E-07	7.9E-08	1.9E-07
Trichloroethylene	6.2E-02	1.1E-11	9.1E-12	2.0E-11	5.0E-06	4.1E-06	9.1E-06	1.1E-06	7.6E-07	1.9E-06
Dichloroethylene, cis-1,2-	3.8E-02				6.2E-07	5.1E-07	1.1E-06	1.4E-07	9.4E-08	2.3E-07
Dichloroethylene, trans-1,2-	1.2E-03				9.7E-09	8.0E-09	1.8E-08	2.1E-09	1.5E-09	3.6E-09
Toluene	1.2E-03				2.4E-09	2.4E-09	4.8E-09	5.3E-10	4.4E-10	9.7E-10
Acetone	2.7E-02				4.8E-09	4.0E-09	8.8E-09	3.5E-09	2.4E-09	5.9E-09
Chlorobenzene	5.6E-03				4.5E-08	3.7E-08	8.3E-08	9.9E-09	6.9E-09	1.7E-08
Dichlorobenzene, 1,4- (p-DCB)	7.8E-03	3.0E-12	2.5E-12	5.5E-12	1.4E-08	1.2E-08	2.6E-08	3.1E-09	2.1E-09	5.2E-09
Aliphatics C19 to C36	3.3E+01				2.6E-06	2.2E-06	4.8E-06	1.9E-06	1.3E-06	3.3E-06
Aromatics C11 to C22	1.4E+01				2.7E-05	6.3E-05	9.0E-05	6.0E-06	1.2E-05	1.8E-05
Arsenic	6.6E+00	1.6E-07	4.0E-08	2.0E-07	3.6E-03	8.8E-04	4.4E-03	7.8E-03	1.6E-03	9.4E-03
Barium	2.8E+01				2.3E-05	9.4E-06	3.2E-05	1.4E-04	5.0E-05	1.9E-04
Chromium (total)	1.15E+01				6.2E-04	4.6E-04	1.1E-03	2.0E-04	1.3E-04	3.3E-04
Lead	5.90E+00				6.4E-04	6.3E-05	7.0E-04	1.4E-03	1.2E-04	1.5E-03

Trespasser - Soil: Table TS-2		Vlook	cup Version v08
Equations to Calculate Cancer Risk for a Trespasser (Age 11-18 years)	Parameter	Value	Units
	CSF	OHM specific	(mg/kg-day)
ancer Risk from Ingestion	LADD	age/OHM specific	mg/kg-day
	[OHM] _{soil}	OHM specific	mg/kg
ELCR _{ing} = LADD _{ing} * CSF	IR	50	mg/day
	RAF _{c-ing}	OHM specific	dimensionless
$LADD_{ing} = [OHM]_{soil} * IR * RAF_{cing} * EF_{ing} * ED * EP * C$	RAFo-derm	OHM specific	dimensionles
BW * AP _{lifetime}	EFing,derm	0.164	event/day
	ED	1	day/event
ancer Risk from Dermal Absorption	EP	7	years
	С	0.000001	kg/mg
ELCR _{derm} = LADD _{derm} * CSF	BW	50.7	kg
	AP _(hifetime)	70	years
$LADD_{derm} = \underbrace{[OHM]_{soil} * SA * RAF_{cderm} * SAF * EF_{derm} * ED * EP * C}_{Iderm}$	SA	2940	cm ² /day
BW * AP _{lifetime}	SAF	0.14	mg/cm ⁴

Trespasser - Soil: Table TS-3

Equations to Calculate Chronic Noncancer Risk for a Trespasser (Age 11-18 years)



		ookup Version v080			
Parameter	Value	Units			
RfD	OHM specific	mg/kg-day			
ADD	OHM specific	mg/kg-day			
[OHM] _{soil}	OHM specific	mg/kg			
IR	50	mg/day			
RAF _{nc-ing}	OHM specific	dimensionless			
RAF _{nc-derm}	OHM specific	dimensionless			
EF _{ing,derm}	0.164	event/day			
EF _{cyanide}	1.00	event/day			
ED	1	day/event			
EP	7	years			
EP _{cyanide}	144	day			
Ċ	0.000001	kg/mg			
BW	50.7	kg			
AP	7	year			
AP _{cyanide}	1	day			
SA	2940	cm ² /day			
SAF	0.14	mg/cm ²			

Trespasser - Soil: Table TS-4

Equations to Calculate Subchronic Noncancer Risk for a Trespasser (Age 11-12 years)

$$IQ_{derm} = \frac{RfD_{derm}}{RfD_{subchronic}}$$

[OHM]_{soil} * SA * RAF_{nc-derm} * SAF * EF_{derm} * ED * EP * C BW * AP ADD_{derm} = ---

Vlookup Versior								
Parameter	Value	Units						
RfD	OHM specific	mg/kg-day						
ADD	OHM specific	mg/kg-day						
[OHM] _{soil}	OHM specific	mg/kg						
IR	50	mg/day						
RAF _{nc-ing}	OHM specific	dimensionless						
RAF _{nc-derm}	OHM specific	dimensionless						
EF _{ing,derm}	0.286	event/day						
EF _{cyanide}	1.00	event/day						
ED	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	day/event						
EPcyanide		day						
EP	0.577	years						
C	0.000001	kg/mg						
BW	40.3	kg						
AP	0.577	year						
AP _{cyanide}	1	day						
SA	2477	cm ² /day						
SAF	0.14	mg/cm ²						

Trespasser - Soil: Table TS-5 Definitions and Exposure Factors

Parameter	Value	Units	Notes
ELCR - Excess Lifetime Cancer Risk	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)
CSF - Cancer Slope Factor	chemical specific	(mg/kg-day) ⁻¹	see Table RS-7
LADD - Lifetime Average Daily Dose	chemical specific	mg/kg-day	Pathway specific
HQ - Hazard Quotient	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)
RfD - Reference Dose	chemical specific	mg/kg-day	see Table RS-7
ADD - Average Daily Dose	chemical specific	mg/kg-day	Pathway specific
EPC - Exposure Point Concentration	chemical specific	mg/kg	
IR - Soil Ingestion Rate	50	mg/day	MADEP. 2002. Technical Update: Calculation of an Enhanced Soil Ingestion Rate.
			(http://www.mass.gov/dep/ors/orspubs.htm)
RAF _c - Relative Absorption Factor for Cancer Effects	chemical specific	dimensionless	
EF _{subchronic} - Exposure Frequency for subchronic ingestion or dermal exposure	0.286	event/day	2 days/week
EF _{chronic} - Exposure Frequency for chronic ingestion or dermal exposure	0.164	event/day	2 days/week, 30 weeks/year
EF _{cancer} - Exposure Frequency for cancer, ingestion or dermal exposure	0.164	event/day	2 days/week, 30 weeks/year
EF _{cyanide} - Exposure Frequency for cyanide exposure	1.00	event/day	
ED - Exposure Duration	1	day/event	
EP ₍₁₁₋₁₂₎ - Exposure Period for age group 11-12	0.577	years	30 weeks
EP ₍₁₁₋₁₈₎ - Exposure Period for age group 11-18	7	years	
EP _{cyanide} - Exposure period for cyanide exposure	1	day	MADEP. 1995. Guidance for Disposal Site Risk Characterization. Page 5-5.
BW ₍₁₁₋₁₂₎ - Body Weight for age group 11-12	40.3		U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7
BW ₍₁₁₋₁₈₎ - Body Weight for age group 11-18	50.7	-	lbid
AP _{subchronic} - Averaging Period for subchronic noncancer	0.577	years	30 weeks
AP _{chronic} - Averaging Period for chronic noncancer	7	years	
AP _{cancer} - Averaging Period for lifetime	70	years	
AP _{cyanide} - Averaging period for assessing cyanide exposure	1	•	MADEP. 1995. Guidance for Disposal Site Risk Characterization. Page 5-5.
SA ₍₁₁₋₁₂₎ - Surface Area for age group 11-12	2477		50th percentile of forearms, hands, and feet for females.
			MADEP 1995 Guidance for Disposal Site Risk Characterization, Table B-2.
SA(11-18) - Surface Area for age group 11-18	2940		Ibid
SAF - Surface Adherence Factor, Trespasser	0.14		SAF developed for ShortForm according to procedure outlined in MA DEP Technical Update:
			Weighted Skin-Soil Adherence Factors, April 2002.

Trespasser - Soil: Table TS-6 Chemical-Specific Data

COLUMN TWO IS NOT THE OWNER.

COLUMN TWO IS NOT

Vlookup Version v0808

Oil or Hazardous Material	CSF _(mg/kg-day) ⁻¹ ;		RAFederm	Chronic RfD mg/kg-day	Subchronic RfD mg/kg-day	STREPHICK SHI	Chronic RAF _{ac-derm}	Subchronic RAF _{ne-ing}	Subchronic RAF _{no-derm}
Tetrachloroethylene	5.1E-02	1.00	0.10	1.0E-02	1.0E-01	1	0.1	1	0.1
Trichloroethylene	1.1E-02	1.00	0.10	2.0E-03	2.0E-02	1	0.1	1	0.1
Dichloroethylene, cis-1,2-				1.0E-02	1.0E-01	1	0.1	1	0.1
Dichloroethylene, trans-1,2-				2.0E-02	2.0E-01	1	0.1	1	0.1
Toluene				8.0E-02	8.0E-01	1	0.12	1	0.12
Acetone				9.0E-01	2.7E+00	1	0.1	1	0.1
Chlorobenzene				2.0E-02	2.0E-01	1	0.1	1	0.1
Dichlorobenzene, 1,4- (p-E	2.4E-02	1.00	0.10	9.0E-02	9.0E-01	1	0.1	1	0.1
Aliphatics C19 to C36				2.0E+00	6.0E+00	1	0.1	1	0.1
Aromatics C11 to C22				3.0E-02	3.0E-01	0.36	0.1	0.36	0.1
Arsenic	1.5E+00	1.00	0.03	3.0E-04	3.0E-04	1	0.03	1	0.03
Barium				2.0E-01	7.0E-02	1	0.05	1	0.05
Chromium (total)				3.0E-03	2.0E-02	1	0.09	1	0.09
Lead				7.5E-04	7.5E-04	0.5	0.006	0.5	0.006

Park Visitor - Soil: Table PS-1 Exposure Point Concentration (EPC)

Based on Visitor Ages 1-31 (Cancer), 1-8 (Chronic Noncancer), and 1-2 (Subchronic Noncancer)

ShortForm Version 06-06

Vlookup Version v0808

ELCR (all chemicals) = 3E-06 Chronic HI (all chemicals) = 6E-02

Subchronic HI (all chemicals) = 1E-01

Oil or	EPC					Chronic		Subchronic		
Hazardous Material	(mg/kg)	ELCRingestion	ELCRdermal	ELCRiotal	HQing	HQderm	FHQtotal	HQing	HQderm	HQtotal
Tetrachioroethyiene	3.2E-02	3.7E-10	3.8E-10	7.5E-10	4.6E-06	4.0E-06	8.6E-06	1.3E-06	7.5E-07	2.0E-06
Trichloroethylene	6.2E-02	1.5E-10	1.6E-10	3.1E-10	4.5E-05	3.8E-05	8.3E-05	1.2E-05	7.2E-06	2.0E-05
Dichloroethylene, cis-1,2-	3.8E-02				5.6E-06	4.7E-06	1.0E-05	1.5E-06	9.0E-07	2.4E-06
Dichloroethylene, trans-1,2-	1.2E-03				8.7E-08	7.4E-08	1.6E-07	2.4E-08	1.4E-08	3.8E-08
Toluene	1.2E-03				2.2E-08	2.2E-08	4.4E-08	6.0E-09	4.2E-09	1.0E-08
Acetone	2.7E-02				4.3E-08	3.7E-08	8.0E-08	4.0E-08	2.3E-08	6.3E-08
Chlorobenzene	5.6E-03				4.1E-07	3.5E-07	7.5E-07	1.1E-07	6.5E-08	1.8E-07
Dichlorobenzene, 1,4- (p-DCB)	7.8E-03	4.2E-11	4.4E-11	8.6E-11	1.3E-07	1.1E-07	2.3E-07	3.5E-08	2.0E-08	5.5E-08
Aliphatics C19 to C36	3.3E+01				2.4E-05	2.0E-05	4.4E-05	2.2E-05	1.3E-05	3.4E-05
Aromatics C11 to C22	1.4E+01				2.5E-04	5.8E-04	8.3E-04	6.8E-05	1.1E-04	1.8E-04
Arsenic	6.6E+00	2.2E-06	6.9E-07	2.9E-06	3.2E-02	8.2E-03	4.0E-02	8.8E-02	1.5E-02	1.0E-01
Barium	2.8E+01				2.0E-04	8.7E-05	2.9E-04	1.6E-03	4.7E-04	2.1E-03
Chromium (total)	1.15E+01				5.6E-03	4.3E-03	9.8E-03	2.3E-03	1.2E-03	3.5E-03
Lead	5.90E+00				5.7E-03	5.8E-04	6.3E-03	1.6E-02	1.1E-03	1.7E-02

Park Visitor - Soil: Table PS-2	Vlookup Version v0808					
Equations to Calculate Cancer Risk for Visitor (Age 1-31 years)	Parameter	Value	Units			
	CSF	OHM specific	(mg/kg-day)			
Cancer Risk from Ingestion	LADD	age/OHM specific	mg/kg-day			
	[OHM] _{soil}	OHM specific	mg/kg			
$ELCR_{ing} = LADD_{ing(1-31)} * CSF$	IR ₍₁₋₈₎	100	mg/day			
	IR ₍₈₋₁₅₎	50	mg/day			
$LADD_{ing (1-31)} = LADD_{ing (1-8)} + LADD_{ing (8-15)} + LADD_{ing (15-31)}$	IR(15-31)	50	mg/day			
	RAF _{c-ing}	OHM specific	dimensionless			
[OHM] _{soil} * IR_x * RAF_{c-ing} * EF_{ing} * ED * EP_x * C	RAFc-derm	OHM specific	dimensionless			
$LADD_{ing (age group x)} = \frac{[OFIVI]_{soil} + IK_x + KAr_{cing} + Er_{ing} + ED + Er_x + C}{BW_x + AP_{lifetime}}$	EF _{ing,derm}	0.247	event/day			
	ED		day/event			
Cancer Risk from Dermal Absorption	EP ₍₁₋₈₎	7	years			
	EP(8-15)	7	years			
ELCR _{derm} = LADD _{derm} * CSF	EP(15-31)	16	years			
	С	0.000001	kg/mg			
$LADD_{derm (1-31)} = LADD_{derm (1-8)} + LADD_{derm (8-15)} + LADD_{derm (15-31)}$	BW ₍₁₋₈₎	17.0	kg			
	BW(8-15)	39.9	kg			
$LADD_{derm(age group x)} = \frac{[OHM]_{soil} * SA_x * RAF_{c-derm} * SAF_x * EF_{derm} * ED * EP_x * C}{DW * AP}$	BW(15-31)	58.7	kg			
BW _x * AP _{lifetime}	AP _(lifetime)	70	years			
	SA(1-8)	2431	cm ² /day			
	SA(8-15)	4427	cm ² /day			
	270 N - 9 - 1 - 7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Server and APPEn States of the POP	Proceeding to the second states			

SA(15-31)

SAF(1-8)

SAF(8-15)

SAF(15-31)

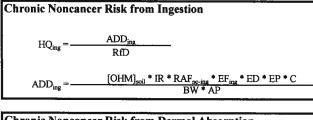
5653

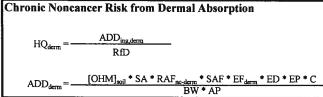
0.35

0.14

0.13

cm²/day

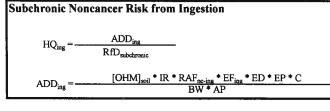

mg/cm²

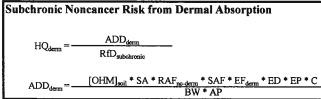

mg/cm²

mg/cm²

Park Visitor - Soil: Table PS-3 Equations to Calculate Chronic Noncancer Risk for Visitor (Age 1-8 years)

Vlookup Version v0808





Parameter	Value	Units		
RfD	OHM specific	mg/kg-day		
ADD	OHM specific	mg/kg-day		
[OHM] _{soil}	OHM specific	mg/kg		
IR	100	mg/day		
RAF _{no-ing}	OHM specific	dimensionless		
RAF _{nc-derm}	OHM specific	dimensionless		
EF _{ing,derm}	0.247	event/day		
EF _{cyanide}	1.00	event/day		
ED	1	day/event		
EP	7	years		
EPcyanide	1	day		
Ċ	0.000001	kg/mg		
BW	17.0	kg		
AP	7	year		
APcyanide	1	day		
SA	2431	cm ² /day		
SAF	0.35	mg/cm ²		

.

Park Visitor - Soil: Table PS-4 Equations to Calculate Subchronic Noncancer Risk for Visitor (Age 1-2 years)

Parameter	Value	Units
RfD	OHM specific	mg/kg-day
ADD	OHM specific	mg/kg-day
[OHM] _{soil}	OHM specific	mg/kg
IR	100	mg/day
RAF _{nc-ing}	OHM specific	dimensionless
RAF _{no-derm}	OHM specific	dimensionless
EF _{ing,derm}	0.428	event/day
EF _{cyanide}	1.00	event/day
ED	1	day/event
EP	0.577	years
EP _{cyanide}	1	day
C	0.000001	kg/mg
BW	10.7	kg
AP	0.577	year
AP _{cyanide}	1	day
SA	1670	cm ² /day
SAF	0.35	mg/cm ²

Park Visitor - Soil: Table PS-5 Definitions and Exposure Factors

Parameter	Value	Units	Notes
ELCR - Excess Lifetime Cancer Risk	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal)
CSF - Cancer Slope Factor	chemical specific	(mg/kg-day) ⁻¹	see Table PS-6
LADD - Lifetime Average Daily Dose	chemical specific	mg/kg-day	Pathway specific
HQ - Hazard Quotient	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal)
RfD - Reference Dose	chemical specific	mg/kg-day	see Table PS-6
ADD - Average Daily Dose	chemical specific	mg/kg-day	Pathway specific
EPC - Exposure Point Concentration	chemical specific	mg/kg	
$IR_{(1-2)}$ - Soil Ingestion Rate for age group 1-2	100	mg/day	MADEP. 1995. Guidance for Disposal Site Risk Characterization. Appendix Table B-3.
$IR_{(1-8)}$ - Soil Ingestion Rate for age group 1-8	100	mg/day	Ibid
IR ₍₈₋₁₅₎ - Soil Ingestion Rate for age group 8-15	50	mg/day	Ibid
IR(15-31) - Soil Ingestion Rate for age group 15-31	50	mg/day	Ibid
RAF _c - Relative Absorption Factor for Cancer Effects	chemical specific	dimensionless	Adjusts estimated dose to conform to the revelant CSF. See Table PS-6
RAF _{NC} - Relative Absorption Factor for non-Cancer Effects	chemical specific	dimensionless	Adjusts estimated dose to conform to the revelant RfD. See Table PS-6
EF _{subchronic} - Exposure Frequency for subchronic exposure	0.428	event/day	3 events/week
EF _{chronic,lifetime} - Exposure Frequency for chronic or lifetime exposure	0.247	event/day	3 events/week, 30 weeks/year
EF _{cyanide} - Exposure Frequency for cyanide exposure	1.00	event/day	MADEP. 1995. Guidance for Disposal Site Risk Characterization. Page 5-5.
ED - Exposure Duration	1	day/event	
EP ₍₁₋₂₎ - Exposure Period for age group 1-2	0.577	years	30 weeks
EP ₍₁₋₈₎ - Exposure Period for age group 1-8	7	years	
EP ₍₈₋₁₅₎ - Exposure Period for age group 8-15	7	years	
EP ₍₁₅₋₃₁₎ - Exposure Period for age group 15-31	16	years	
EP _{cyanide} - Exposure period for cyanide exposure	1	day	MADEP. 1995. Guidance for Disposal Site Risk Characterization. Page 5-5.
BW ₍₁₋₂₎ - Body Weight for age group 1-2	10.7	kg	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7, females.
BW(1-8) - Body Weight for age group 1-8	17.0	kg	Ibid
BW(8-15) - Body Weight for age group 8-15	39.9	kg	Ibid
BW ₍₁₅₋₃₁₎ - Body Weight for age group 15-31	58.7	kg	Ibid
AP _{subchronic} - Averaging Period for subchronic noncancer	0.577	years	30 weeks
AP _{chronic} - Averaging Period for chronic noncancer	7	years	
AP _{lifetime} - Averaging Period for cancer/lifetime	70	years	
AP _{cyanide} - Averaging period for assessing cyanide exposure	1	day	MADEP. 1995. Guidance for Disposal Site Risk Characterization, Page 5-5.
$SA_{(1-2)}$ - Surface Area for age group 1-2	1670	cm ² /day	50th percentile of face (1/3 head), forearms, hands, lower legs, and feet for females.
	10/0		MADEP 1995 Guidance for Disposal Site Risk Characterization, Appendix Table B-2.
SA ₍₁₋₈₎ - Surface Area for age group 1-8	2431	cm^2/day	Ibid
$SA_{(8-15)}$ - Surface Area for age group 8-15	4427	cm^2/day	Ibid
SA ₍₁₅₋₃₁₎ - Surface Area for age group 15-31	5653	cm ² /day	Ibid
$SAF_{(1-2)}$. Surface Adherence Factor for age group 1-2	0.35	mg_{soil}/cm^2	All SAFs developed for ShortForm according to procedure outlined in MADEP Technical Update:
SAF ₍₁₋₂₎ . Surface Adherence Factor for age group 1-8	0.35	mg _{soil} / cm ²	Weighted Skin-Soil Adherence Factors, April 2002
SAF ₍₈₋₁₅₎ -Surface Adherence Factor for age group 8-15	0.33		weighten Skin-Son Autorence Pactors, April 2002
SAF ₍₁₅₋₃₁₎ - Surface Adherence Factor for age group 3-15 SAF ₍₁₅₋₃₁₎ - Surface Adherence Factor for age group 15-31	0.14	mg_{soil} / cm^2	
(15-31) - Surface Autoretice Factor for age group 15-31	0.13	mg _{soil} / cm ²	

Park Visitor - Soil: Table PS-6 Chemical-Specific Data

Oil or Hazardous Material	CSR (mg/kg-day) ⁻¹	RAF _{e-ing}	RAF _{c-derm}	Chronic RfD mg/kg-day	Subchronic RID mg/kg-day	And I Have been a set	Chronic RAF _{ne-derm}	HIALLO CONTRACTOR AND	Subchronic RAF _{no-derm}
Tetrachloroethylene	5.1E-02	1	0.1	1.0E-02	1.0E-01	1	0.1	1	0.1
Trichloroethylene	1.1E-02	1	0.1	2.0E-03	2.0E-02	1	0.1	1	0.1
Dichloroethylene, cis-1,2-				1.0E-02	1.0E-01	1	0.1	1	0.1
Dichloroethylene, trans-1,2-				2.0E-02	2.0E-01	1	0.1	1	0.1
Toluene				8.0E-02	8.0E-01	1	0.12	1	0.12
Acetone				9.0E-01	2.7E+00	1	0.1	1	0.1
Chlorobenzene				2.0E-02	2.0E-01	1	0.1	1	0.1
Dichlorobenzene, 1,4- (p-E	2.4E-02	1	0.1	9.0E-02	9.0E-01	1	0.1	1	0.1
Aliphatics C19 to C36				2.0E+00	6.0E+00	1	0.1	1	0.1
Aromatics C11 to C22				3.0E-02	3.0E-01	0.36	0.1	0.36	0.1
Arsenic	1.5E+00	1	0.03	3.0E-04	3.0E-04	1	0.03	1	0.03
Barium				2.0E-01	7.0E-02	1	0.05	1	0.05
Chromium (total)				3.0E-03	2.0E-02	1	0.09	1	0.09
Lead				7.5E-04	7.5E-04	0.5	0.006	0.5	0.006